Genome-scale epigenetic reprogramming during epithelial to mesenchymal transition

[1]  D. E. Mills,et al.  Sternberg's Diagnostic Surgical Pathology , 2012 .

[2]  W. Reik,et al.  Epigenetic Reprogramming in Plant and Animal Development , 2010, Science.

[3]  R. Weinberg,et al.  AACR special conference on epithelial-mesenchymal transition and cancer progression and treatment. , 2010, Cancer research.

[4]  Xin Hu,et al.  Requirement of the histone demethylase LSD1 in Snai1-mediated transcriptional repression during epithelial-mesenchymal transition , 2010, Oncogene.

[5]  R. Wellinger,et al.  Methylated H3K4, a Transcription-Associated Histone Modification, Is Involved in the DNA Damage Response Pathway , 2010, PLoS genetics.

[6]  Martin J. Aryee,et al.  Androgen-induced TOP2B mediated double strand breaks and prostate cancer gene rearrangements , 2010, Nature Genetics.

[7]  Jialiang Liang,et al.  A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. , 2010, Cell stem cell.

[8]  J. Wrana,et al.  Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. , 2010, Cell stem cell.

[9]  Lee E. Edsall,et al.  Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. , 2010, Cell stem cell.

[10]  A. Feinberg,et al.  Comprehensive High‐Throughput Arrays for Relative Methylation (CHARM) , 2010, Current protocols in human genetics.

[11]  Jie Zhang,et al.  Nuclear Receptor-Induced Chromosomal Proximity and DNA Breaks Underlie Specific Translocations in Cancer , 2009, Cell.

[12]  R. Huang,et al.  Epithelial-Mesenchymal Transitions in Development and Disease , 2009, Cell.

[13]  Yanan Yang,et al.  Nitric oxide suppresses transforming growth factor‐β1–induced epithelial‐to‐mesenchymal transition and apoptosis in mouse hepatocytes , 2009, Hepatology.

[14]  Luyang Sun,et al.  LSD1 Is a Subunit of the NuRD Complex and Targets the Metastasis Programs in Breast Cancer , 2009, Cell.

[15]  Eric S. Lander,et al.  Identification of Selective Inhibitors of Cancer Stem Cells by High-Throughput Screening , 2009, Cell.

[16]  G. Rangan,et al.  Disruption of E-cadherin by matrix metalloproteinase directly mediates epithelial-mesenchymal transition downstream of transforming growth factor-beta1 in renal tubular epithelial cells. , 2009, The American journal of pathology.

[17]  Raghu Kalluri,et al.  The basics of epithelial-mesenchymal transition. , 2009, The Journal of clinical investigation.

[18]  T. Misteli,et al.  The emerging role of nuclear architecture in DNA repair and genome maintenance , 2009, Nature Reviews Molecular Cell Biology.

[19]  Samy Lamouille,et al.  TGF-β-induced epithelial to mesenchymal transition , 2009, Cell Research.

[20]  A. Feinberg,et al.  Genome-wide methylation analysis of human colon cancer reveals similar hypo- and hypermethylation at conserved tissue-specific CpG island shores , 2008, Nature Genetics.

[21]  Alain Nicolas,et al.  Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites , 2009, The EMBO journal.

[22]  A. Feinberg,et al.  Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells , 2009, Nature Genetics.

[23]  Matthew B. Wilson,et al.  Sustained induction of epithelial to mesenchymal transition activates DNA methylation of genes silenced in basal-like breast cancers , 2008, Proceedings of the National Academy of Sciences.

[24]  S. Dooley,et al.  Hepatocyte-specific Smad7 expression attenuates TGF-beta-mediated fibrogenesis and protects against liver damage. , 2008, Gastroenterology.

[25]  L. Wessels,et al.  Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions , 2008, Nature.

[26]  Wenjun Guo,et al.  The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells , 2008, Cell.

[27]  E. Lander,et al.  Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. , 2008, Cancer research.

[28]  Daniel J. Hoeppner,et al.  Global transcription in pluripotent embryonic stem cells. , 2008, Cell stem cell.

[29]  M. Zofall,et al.  Cell cycle control of centromeric repeat transcription and heterochromatin assembly , 2008, Nature.

[30]  S. Desiderio,et al.  A plant homeodomain in RAG-2 that binds Hypermethylated lysine 4 of histone H3 is necessary for efficient antigen-receptor-gene rearrangement. , 2007, Immunity.

[31]  R. A. Rahimi,et al.  TGF‐β signaling: A tale of two responses , 2007 .

[32]  T. Mikkelsen,et al.  Genome-wide maps of chromatin state in pluripotent and lineage-committed cells , 2007, Nature.

[33]  Connie Wang,et al.  Transforming Growth Factor-β1 Induces an Epithelial-to-Mesenchymal Transition State in Mouse Hepatocytes in Vitro* , 2007, Journal of Biological Chemistry.

[34]  C. Allis,et al.  Extraction, purification and analysis of histones , 2007, Nature Protocols.

[35]  A. Feinberg Phenotypic plasticity and the epigenetics of human disease , 2007, Nature.

[36]  Gratien G. Prefontaine,et al.  Opposing LSD1 complexes function in developmental gene activation and repression programmes , 2007, Nature.

[37]  M. Gallardo,et al.  RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination , 2007, Nature.

[38]  Peter A. Jones,et al.  The Epigenomics of Cancer , 2007, Cell.

[39]  T. Kouzarides Chromatin Modifications and Their Function , 2007, Cell.

[40]  Min Gyu Lee,et al.  Isolation and characterization of histone H3 lysine 4 demethylase-containing complexes. , 2006, Methods.

[41]  C. Glass,et al.  A Topoisomerase IIß-Mediated dsDNA Break Required for Regulated Transcription , 2006, Science.

[42]  James A. Cuff,et al.  A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells , 2006, Cell.

[43]  K. Jones,et al.  The APC tumor suppressor counteracts beta-catenin activation and H3K4 methylation at Wnt target genes. , 2006, Genes & development.

[44]  F. Lan,et al.  Regulation of LSD1 histone demethylase activity by its associated factors. , 2005, Molecular cell.

[45]  Antoine H. F. M. Peters,et al.  LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription , 2005, Nature.

[46]  Brian D. Strahl,et al.  A Novel Domain in Set2 Mediates RNA Polymerase II Interaction and Couples Histone H3 K36 Methylation with Transcript Elongation , 2005, Molecular and Cellular Biology.

[47]  Yang Shi,et al.  Histone Demethylation Mediated by the Nuclear Amine Oxidase Homolog LSD1 , 2004, Cell.

[48]  T. D’alfonso,et al.  Sternberg???s Diagnostic Surgical Pathology , 2004 .

[49]  J. Martens,et al.  Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. , 2003, Molecular cell.

[50]  Beatrix Ueberheide,et al.  Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. , 2003, Molecular cell.

[51]  H. Kato,et al.  G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. , 2002, Genes & development.

[52]  C. Allis,et al.  Translating the Histone Code , 2001, Science.

[53]  G. Felsenfeld,et al.  Transitions in histone acetylation reveal boundaries of three separately regulated neighboring loci , 2001, The EMBO journal.

[54]  G. Merlino,et al.  Establishment and characterization of differentiated, nontransformed hepatocyte cell lines derived from mice transgenic for transforming growth factor alpha. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[56]  R. A. Rahimi,et al.  TGF-beta signaling: a tale of two responses. , 2007, Journal of cellular biochemistry.

[57]  J. Wang,et al.  Transforming growth factor-beta1 induces epithelial-to-mesenchymal transition and apoptosis via a cell cycle-dependent mechanism. , 2006, Oncogene.