On the Translation of Higher-Order Problems into First-Order Logic
暂无分享,去创建一个
[1] Paul Bernays,et al. A System of Axiomatic Set Theory , 1976 .
[2] Herbert B. Enderton,et al. A mathematical introduction to logic , 1972 .
[3] J. Neumann,et al. Die Axiomatisierung der Mengenlehre , 1928 .
[4] Frank Pfenning,et al. The TPS Theorem Proving System , 1990, CADE.
[5] Leon Henkin,et al. Completeness in the theory of types , 1950, Journal of Symbolic Logic.
[6] Peter B. Andrews. An introduction to mathematical logic and type theory - to truth through proof , 1986, Computer science and applied mathematics.
[7] Gérard Huet,et al. Constrained resolution: a complete method for higher-order logic. , 1972 .
[8] Stewart Shapiro,et al. Second-order languages and mathematical practice , 1985, Journal of Symbolic Logic.
[9] Manfred Kerber. How to Prove Higher Order Theorems in First Order Logic , 1991, IJCAI.
[10] L. Henschen. N-sorted logic for automatic theorem-proving in higher-order logic , 1972, ACM Annual Conference.
[11] Peter B. Andrews. General models and extensionality , 1972, Journal of Symbolic Logic.
[12] J. Roger Hindley,et al. Introduction to combinators and λ-calculus , 1986, Acta Applicandae Mathematicae.
[13] Alonzo Church,et al. A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.
[14] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .