Entanglement in a solid-state spin ensemble

Entanglement is the quintessential quantum phenomenon. It is a necessary ingredient in most emerging quantum technologies, including quantum repeaters, quantum information processing and the strongest forms of quantum cryptography. Spin ensembles, such as those used in liquid-state nuclear magnetic resonance, have been important for the development of quantum control methods. However, these demonstrations contain no entanglement and ultimately constitute classical simulations of quantum algorithms. Here we report the on-demand generation of entanglement between an ensemble of electron and nuclear spins in isotopically engineered, phosphorus-doped silicon. We combined high-field (3.4 T), low-temperature (2.9 K) electron spin resonance with hyperpolarization of the 31P nuclear spin to obtain an initial state of sufficient purity to create a non-classical, inseparable state. The state was verified using density matrix tomography based on geometric phase gates, and had a fidelity of 98% relative to the ideal state at this field and temperature. The entanglement operation was performed simultaneously, with high fidelity, on 1010 spin pairs; this fulfils one of the essential requirements for a silicon-based quantum information processor.

[1]  H. Riemann,et al.  Enrichment of silicon for a better kilogram , 2010 .

[2]  Earl T. Campbell,et al.  Distributed quantum-information processing with minimal local resources , 2007, 0704.1464.

[3]  Leonard J. Schulman,et al.  Physical Limits of Heat-Bath Algorithmic Cooling , 2005, SIAM J. Comput..

[4]  Arzhang Ardavan,et al.  High fidelity single qubit operations using pulsed electron paramagnetic resonance. , 2005, Physical review letters.

[5]  John J. L. Morton A silicon-based cluster state quantum computer , 2009 .

[6]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[7]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[8]  Pines,et al.  Study of the Aharonov-Anandan quantum phase by NMR interferometry. , 1988, Physical review letters.

[9]  M. Nakahara,et al.  Implementation of molecular spin quantum computing by pulsed ENDOR technique: Direct observation of quantum entanglement and spinor , 2007 .

[10]  Preparing high purity initial states for nuclear magnetic resonance quantum computing. , 2003, Physical review letters.

[11]  H. Riemann,et al.  Electron spin coherence and electron nuclear double resonance of Bi donors in natural Si. , 2010, Physical Review Letters.

[12]  B. E. Kane,et al.  Hydrogenic spin quantum computing in silicon: a digital approach. , 2002, Physical review letters.

[13]  K. Itoh,et al.  Dynamic nuclear polarization of {sup 29}Si nuclei in isotopically controlled phosphorus doped silicon , 2009 .

[14]  E. Knill,et al.  EFFECTIVE PURE STATES FOR BULK QUANTUM COMPUTATION , 1997, quant-ph/9706053.

[15]  Gabriel Aeppli,et al.  The initialization and manipulation of quantum information stored in silicon by bismuth dopants. , 2010, Nature materials.

[16]  Belgium,et al.  Maximal entanglement versus entropy for mixed quantum states , 2002, quant-ph/0208138.

[17]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[18]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[19]  John J. L. Morton,et al.  Magnetic field sensors using 13-spin cat states , 2009, 0907.1372.

[20]  D. Wollan Dynamic nuclear poladzzttion with an inhomogeneously broadened ESR line. I. Theory , 1976 .

[21]  Multiple quantum pulsed ENDOR spectroscopy by time proportional phase increment detection , 1996 .

[22]  T. Hiroshima,et al.  Maximally entangled mixed states in two qubits , 2000, quant-ph/0003023.

[23]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[24]  Timothy F. Havel,et al.  Benchmarking quantum control methods on a 12-qubit system. , 2006, Physical review letters.

[25]  Aharonov,et al.  Phase change during a cyclic quantum evolution. , 1987, Physical review letters.

[26]  L. Hollenberg,et al.  Single-shot readout of an electron spin in silicon , 2010, Nature.

[27]  Eugene E. Haller,et al.  Solid-state quantum memory using the 31P nuclear spin , 2008, Nature.

[28]  G. L. Pearson,et al.  Hyperfine Splitting in Spin Resonance of Group V Donors in Silicon , 1954 .

[29]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[30]  D. Suter,et al.  Study of the Aharonov-Anandan Phase by NMR Interferometry , 1988 .

[31]  Norbert Lütkenhaus,et al.  Entanglement as a precondition for secure quantum key distribution. , 2004, Physical review letters.

[32]  Michael Mehring,et al.  Spin-bus concept of spin quantum computing , 2006 .

[33]  Andrew Brennan,et al.  Necessary and Sufficient Conditions , 2018, Logic in Wonderland.

[34]  Jonathan A. Jones,et al.  Magnetic Field Sensing Beyond the Standard Quantum Limit Using 10-Spin NOON States , 2008, Science.

[35]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[36]  Andrew S. Dzurak,et al.  Charge state control and relaxation in an atomically doped silicon device , 2007 .

[37]  R. Jozsa,et al.  On the role of entanglement in quantum-computational speed-up , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[38]  M. Mehring,et al.  Entangled electron and nuclear spin states in 15N@C60: density matrix tomography. , 2008, The Journal of chemical physics.

[39]  D. Wollan Dynamic nuclear polarization with an inhomogeneously broadened ESR line. II. Experiment , 1976 .

[40]  M. Mehring,et al.  Entanglement between an electron and a nuclear spin 1/2. , 2002, Physical review letters.

[41]  S. C. Benjamin,et al.  Coherence of spin qubits in silicon , 2005 .