Analysis of stress, attention, interest, and engagement in onsite and online higher education: A neurotechnological study

The aim of this work is to register and analyse, using neurotechnology, in onsite onsite and online university educational context, the effect on relevant variables in the learning process. This represents an innovation in the current academic literature in this field. In this study, neuroscience technology has been used to measure the cognitive processing of stimuli designed for an academic experience in a university master's degree class. The neurotechnologies employed were galvanic skin response (GSR), electroencephalography (EEG) and eye tracking. After the analysis of the brain recordings, based on attention, interest, stress and engagement in an onsite educational context and their comparative analysis with the online monitoring, the results indicated that the levels of emotional intensity of the students who followed the class in person were higher than those who attended online. At the same time, the values of positive brain activity (attention, interest and engagement) were higher in the onsite group, and the negative variable stress was also higher, which could be explained by the fact that the online students did not activate the camera. The brain recordings of students who were distance learning show less interest and attention, as well as less emotional intensity, demonstrating that distance (online) learning is less effective than classroom learning, in terms of brain signals, for a theoretical university master's degree class. Este trabajo tiene como objetivo registrar y analizar, mediante el uso de neurotecnología, en un contexto formativo universitario presencial y online, el efecto que tiene en variables relevantes en el proceso de aprendizaje, lo cual supone una innovación en la literatura. En este estudio se ha empleado tecnología de neurociencia para medir el procesamiento cognitivo de los estímulos diseñados para una experiencia académica de una clase de máster universitario. Las neurotecnologías empleadas han sido la respuesta galvánica de la piel (GSR), la electroencefalografía (EEG) y el seguimiento ocular. Tras el análisis de los registros cerebrales, basados en la atención, interés, estrés y conexión emocional (engagement), en un contexto educativo presencial y su análisis comparativo con el seguimiento online, los resultados indicaron que los niveles de intensidad emocional de los alumnos que siguieron la clase de forma presencial son más elevados que aquellos que asistieron de forma online. A su vez, los valores de actividad cerebral positiva (atención, interés y engagement) son superiores en el grupo de asistencia presencial, siendo la variable negativa estrés también superior, pudiendo justificarse debido a que los alumnos conectados online no activaban la cámara. Los registros cerebrales de los alumnos que asisten a distancia muestran menor interés y atención, así como una menor intensidad emocional, por lo que el aprendizaje a distancia (online) es menos efectivo, a efectos de señales cerebrales, que la enseñanza en el aula, para una clase teórica de máster universitario.

[1]  S. Cazella,et al.  A systematic literature review on educational recommender systems for teaching and learning: research trends, limitations and opportunities , 2022, Education and Information Technologies.

[2]  T. Chávez-Miyauchi,et al.  Personal Motivation and Learning Self-Management in Students as Result of the Transition to Online Courses during COVID-19 Pandemic , 2021 .

[3]  V. Tur-Viñes,et al.  Neuromarketing Applied to Educational Toy Packaging , 2020, Frontiers in Psychology.

[4]  Mario Alberto Benavides Lara,et al.  Retos educativos durante la pandemia de COVID-19: una encuesta a profesores de la UNAM , 2020, Revista Digital Universitaria.

[5]  Kwok-Wai Cheung,et al.  Learner perceptions versus technology usage: A study of adolescent English learners in Hong Kong secondary schools , 2019, Comput. Educ..

[6]  Matt Bower,et al.  How is the use of technology in education evaluated? A systematic review , 2019, Comput. Educ..

[7]  Michael S. C. Thomas,et al.  Annual Research Review: Educational neuroscience: progress and prospects , 2018, Journal of child psychology and psychiatry, and allied disciplines.

[8]  A. Estévez,et al.  Impact of the Interactive Learning Environments in Children’s Prosocial Behavior , 2018, Sustainability.

[9]  Jiahui Xu,et al.  Review on portable EEG technology in educational research , 2018, Comput. Hum. Behav..

[10]  Debi Prosad Dogra,et al.  Analysis of EEG signals and its application to neuromarketing , 2017, Multimedia Tools and Applications.

[11]  Jzau-Sheng Lin,et al.  A Wireless BCI-Controlled Integration System in Smart Living Space for Patients , 2016, Wirel. Pers. Commun..

[12]  R. Simons,et al.  A new model of educational innovation: Exploring the nexus of organizational learning, distributed leadership, and digital technologies , 2016 .

[13]  Cristina Hava Muntean,et al.  ToTCompute: A Novel EEG-Based TimeOnTask Threshold Computation Mechanism for Engagement Modelling and Monitoring , 2016, International Journal of Artificial Intelligence in Education.

[14]  Douglas B. Clark,et al.  Digital Games, Design, and Learning , 2016, Review of educational research.

[15]  John P. Morgan Online Versus Face-to-Face Accounting Education: A Comparison of CPA Exam Outcomes Across Matched Institutions , 2015 .

[16]  Chih-Chien Wang,et al.  An exploratory study using inexpensive electroencephalography (EEG) to understand flow experience in computer-based instruction , 2014, Inf. Manag..

[17]  P. Howard-Jones Neuroscience and education: myths and messages , 2014, Nature Reviews Neuroscience.

[18]  H. Waxman,et al.  Principals' Perceptions of the Importance of Technology in Schools. , 2013 .

[19]  David Zyngier,et al.  How Motivation Influences Student Engagement: A Qualitative Case Study. , 2012 .

[20]  Thomas Hillman,et al.  The Inscription, Translation and Re-Inscription of Technology for Mathematical Learning , 2011, Technol. Knowl. Learn..

[21]  Alison G. Boardman,et al.  Addressing the “Research Gap” in Special Education Through Mixed Methods , 2011 .

[22]  Michel Ferrari,et al.  What Can Neuroscience Bring to Education? , 2011 .

[23]  T. Carew,et al.  Neuroscience and Education: An Ideal Partnership for Producing Evidence-Based Solutions to Guide 21st Century Learning , 2010, Neuron.

[24]  Katherine N. Lemon,et al.  Customer Engagement Behavior: Theoretical Foundations and Research Directions , 2010 .

[25]  L. Roberts,et al.  Educational Research Questions and Study Design , 2009, Academic psychiatry : the journal of the American Association of Directors of Psychiatric Residency Training and the Association for Academic Psychiatry.

[26]  A. Anderson,et al.  Immediate memory consequences of the effect of emotion on attention to pictures. , 2008, Learning & memory.

[27]  John T. E. Richardson,et al.  Face‐to‐face versus online tutoring support in distance education , 2007 .

[28]  A. Isen,et al.  The Influence of Positive Affect on Intrinsic and Extrinsic Motivation: Facilitating Enjoyment of Play, Responsible Work Behavior, and Self-Control , 2005 .

[29]  J. Buckley,et al.  Agendas, influences, and capability: Perspectives on practice in design and technology education , 2019 .

[30]  Hilke Plassmann,et al.  Branding the brain: A critical review and outlook , 2012 .

[31]  I. Bernal Psicobiología del aprendizaje y la memoria: fundamentos y avances recientes , 2005 .

[32]  Andrew T. Duchowski,et al.  Eye Tracking Methodology - Theory and Practice, Third Edition , 2003 .

[33]  Isabel Portell Cortés,et al.  La amígdala: implicaciones funcionales , 2001 .