Hyperspectral fluorescence lifetime fibre probe spectroscopy for use in the study and diagnosis of osteoarthritis and skin cancer

We present the application of two fibre-optic-coupled time-resolved spectrofluorometers and a compact steady-state diffuse reflected light/fluorescence spectrometer to in vivo and ex vivo studies of skin cancer and osteoarthritis. In a clinical study of skin cancer, 27 lesions on 25 patients were investigated in vivo before surgical excision of the region measured. Preliminary analysis reveals a statistically significant decrease in the autofluorescence lifetime of basal cell carcinomas compared to neighbouring healthy tissue. A study of autofluorescence signals associated with the onset of osteoarthritis indicates autofluorescence lifetime changes associated with collagen degradation.

[1]  P. French,et al.  A hyperspectral fluorescence lifetime probe for skin cancer diagnosis. , 2007, The Review of scientific instruments.

[2]  P. Gallop,et al.  Cross-linking in collagen and elastin. , 1984, Annual review of biochemistry.

[3]  J. Blomfield,et al.  The fluorescent properties of maturing arterial elastin. , 1969, Cardiovascular research.

[4]  D Fujimoto,et al.  Isolation and characterization of a fluorescent material in bovine achilles tendon collagen , 1977 .

[5]  M. Neil,et al.  A compact, multidimensional spectrofluorometer exploiting supercontinuum generation , 2008, Journal of biophotonics.

[6]  Narasimhan Rajaram,et al.  Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy. , 2010, Applied optics.

[7]  Javier A. Jo,et al.  Fluorescence Lifetime Spectroscopy of Glioblastoma Multiforme¶ , 2004, Photochemistry and photobiology.

[8]  W. Lohmann,et al.  In situ detection of melanomas by fluorescence measurements , 1988, Naturwissenschaften.

[9]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[10]  Tuan Vo-Dinh,et al.  Laser‐induced fluorescence spectroscopy for in vivo diagnosis of non‐melanoma skin cancers , 2002, Lasers in surgery and medicine.

[11]  Jan Siegel,et al.  Time-domain fluorescence lifetime imaging applied to biological tissue , 2004, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[12]  M. Nilles,et al.  In situ differentiation between nevi and malignant melanomas by fluorescence measurements , 1991, Naturwissenschaften.

[13]  Georgios N. Stamatas,et al.  Fluorescence spectroscopy of skin , 2002 .

[14]  S. L. Jacques,et al.  In vivo fluorescence spectroscopy and imaging of human skin tumours , 1994, Lasers in Medical Science.

[15]  Steven L. Jacques,et al.  In vivo fluorescence spectroscopy and imaging of human skin tumors. , 1995 .

[16]  G. Jemec,et al.  Diagnosis of Nonmelanoma Skin Cancer/Keratinocyte Carcinoma: A Review of Diagnostic Accuracy of Nonmelanoma Skin Cancer Diagnostic Tests and Technologies , 2007, Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al.].

[17]  Sune Svanberg,et al.  Feasibility study: fluorescence lidar for remote bird classification. , 2010, Applied optics.

[18]  M. Mycek,et al.  Handbook of Biomedical Fluorescence , 2003 .

[19]  Jens Eickhoff,et al.  In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia. , 2007, Journal of biomedical optics.

[20]  Laura Marcu,et al.  Diagnosis of meningioma by time-resolved fluorescence spectroscopy. , 2005, Journal of biomedical optics.

[21]  E. Gratton,et al.  The phasor approach to fluorescence lifetime imaging analysis. , 2008, Biophysical journal.

[22]  M A A Neil,et al.  Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin , 2008, The British journal of dermatology.

[23]  D P Thornhill Separation of a series of chromophores and fluorophores present in elastin. , 1975, The Biochemical journal.