Human Mutation

USF Genomics, College of Public Health, University of South Florida, Tampa, Florida Department of Computer Science and Engineering, College of Engineering, University of South Florida, Tampa, Florida Department of Biostatistics, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan

[1]  D. Bartel Metazoan MicroRNAs , 2018, Cell.

[2]  Weiyuan Ye,et al.  Computational and functional characterization of four SNPs in the SOST locus associated with osteoporosis. , 2018, Bone.

[3]  E. Boerwinkle,et al.  Genetic variants in microRNA genes and targets associated with cardiovascular disease risk factors in the African-American population , 2017, Human Genetics.

[4]  Yan Zhang,et al.  MSDD: a manually curated database of experimentally supported associations among miRNAs, SNPs and human diseases , 2017, Nucleic Acids Res..

[5]  Jacqueline K. White,et al.  Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis , 2017, Nature Genetics.

[6]  Tie-Lin Yang,et al.  A functional SNP regulated by miR‐196a‐3p in the 3′UTR of FGF2 is associated with bone mineral density in the Chinese population , 2017, Human mutation.

[7]  L. Gennari,et al.  MicroRNAs in bone diseases , 2017, Osteoporosis International.

[8]  H. Deng,et al.  Replication of Caucasian Loci Associated with Osteoporosis-related Traits in East Asians , 2016, Journal of bone metabolism.

[9]  Feng Jiang,et al.  Dissecting the biological relationship between TCGA miRNA and mRNA sequencing data using MMiRNA-Viewer , 2016, BMC Bioinformatics.

[10]  A. Baierl,et al.  Circulating microRNA Signatures in Patients With Idiopathic and Postmenopausal Osteoporosis and Fragility Fractures. , 2016, The Journal of clinical endocrinology and metabolism.

[11]  Wen Tan,et al.  Pancreatic cancer risk variant in LINC00673 creates a miR-1231 binding site and interferes with PTPN11 degradation , 2016, Nature Genetics.

[12]  F. Cunningham,et al.  The Ensembl Variant Effect Predictor , 2016, Genome Biology.

[13]  E. Boerwinkle,et al.  dbNSFP v3.0: A One‐Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice‐Site SNVs , 2016, Human mutation.

[14]  A. Keller,et al.  Distribution of miRNA expression across human tissues , 2016, Nucleic acids research.

[15]  Wentong Li,et al.  Klf10 regulates odontoblast differentiation and mineralization via promoting expression of dentin matrix protein 1 and dentin sialophosphoprotein genes , 2016, Cell and Tissue Research.

[16]  J. Buxbaum,et al.  A SPECTRAL APPROACH INTEGRATING FUNCTIONAL GENOMIC ANNOTATIONS FOR CODING AND NONCODING VARIANTS , 2015, Nature Genetics.

[17]  Ricardo Villamarín-Salomón,et al.  ClinVar: public archive of interpretations of clinically relevant variants , 2015, Nucleic Acids Res..

[18]  Andrew Carroll,et al.  WGSA: an annotation pipeline for human genome sequencing studies , 2015, Journal of Medical Genetics.

[19]  A. Uitterlinden,et al.  Identification of a novel FGFRL1 MicroRNA target site polymorphism for bone mineral density in meta-analyses of genome-wide association studies. , 2015, Human molecular genetics.

[20]  D. Bartel,et al.  Predicting effective microRNA target sites in mammalian mRNAs , 2015, eLife.

[21]  T. Takato,et al.  Runx1 and Runx3 Are Downstream Effectors of Nanog in Promoting Osteogenic Differentiation of the Mouse Mesenchymal Cell Line C3H10T1/2. , 2015, Cellular reprogramming.

[22]  Q. Mei,et al.  Radix Dipsaci total saponins stimulate MC3T3-E1 cell differentiation via the bone morphogenetic protein-2/MAPK/Smad-dependent Runx2 pathway. , 2015, Molecular medicine reports.

[23]  R. Gregory,et al.  MicroRNA biogenesis pathways in cancer , 2015, Nature Reviews Cancer.

[24]  David M. Evans,et al.  Genetic variants in adult bone mineral density and fracture risk genes are associated with the rate of bone mineral density acquisition in adolescence , 2015, Human molecular genetics.

[25]  Hu Chen,et al.  An update of miRNASNP database for better SNP selection by GWAS data, miRNA expression and online tools , 2015, Database J. Biol. Databases Curation.

[26]  R. Pereira,et al.  A Single Nucleotide Polymorphism in Osteonectin 3′ Untranslated Region Regulates Bone Volume and Is Targeted by miR‐433 , 2015, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[27]  Qingyang Huang,et al.  Genetic study of complex diseases in the post-GWAS era. , 2015, Journal of genetics and genomics = Yi chuan xue bao.

[28]  Yifei Chen,et al.  DANN: a deep learning approach for annotating the pathogenicity of genetic variants , 2015, Bioinform..

[29]  S. Takeda,et al.  Loss of Osteoblast Runx3 Produces Severe Congenital Osteopenia , 2015, Molecular and Cellular Biology.

[30]  Colin Campbell,et al.  An integrative approach to predicting the functional effects of non-coding and coding sequence variation , 2015, Bioinform..

[31]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[32]  E. Lefai,et al.  An APOA5 3' UTR variant associated with plasma triglycerides triggers APOA5 downregulation by creating a functional miR-485-5p binding site. , 2014, American journal of human genetics.

[33]  Yan Cui,et al.  PolymiRTS Database 3.0: linking polymorphisms in microRNAs and their target sites with human diseases and biological pathways , 2013, Nucleic Acids Res..

[34]  Joel Eriksson,et al.  Genetic Determinants of Trabecular and Cortical Volumetric Bone Mineral Densities and Bone Microstructure , 2013, PLoS genetics.

[35]  Xiaogang Wang,et al.  miR-214 targets ATF4 to inhibit bone formation , 2012, Nature Medicine.

[36]  Gary D. Stormo,et al.  Novel Modeling of Combinatorial miRNA Targeting Identifies SNP with Potential Role in Bone Density , 2012, PLoS Comput. Biol..

[37]  Dai Zhang,et al.  MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs , 2012, BMC Genomics.

[38]  Bronwen L. Aken,et al.  GENCODE: The reference human genome annotation for The ENCODE Project , 2012, Genome research.

[39]  Tim D. Spector,et al.  Genetics of osteoporosis from genome-wide association studies: advances and challenges , 2012, Nature Reviews Genetics.

[40]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[41]  G. Stein,et al.  MicroRNA control of bone formation and homeostasis , 2012, Nature Reviews Endocrinology.

[42]  Andrew E. Bruno,et al.  miRdSNP: a database of disease-associated SNPs and microRNA target sites on 3'UTRs of human genes , 2012, BMC Genomics.

[43]  M. Zuscik,et al.  Smad1 plays an essential role in bone development and postnatal bone formation. , 2011, Osteoarthritis and cartilage.

[44]  G. Stein,et al.  TIEG1/KLF10 Modulates Runx2 Expression and Activity in Osteoblasts , 2011, PloS one.

[45]  E. Boerwinkle,et al.  dbNSFP: A Lightweight Database of Human Nonsynonymous SNPs and Their Functional Predictions , 2011, Human mutation.

[46]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[47]  G. Stein,et al.  Dicer inactivation in osteoprogenitor cells compromises fetal survival and bone formation, while excision in differentiated osteoblasts increases bone mass in the adult mouse. , 2010, Developmental biology.

[48]  Hyunsoo Kim,et al.  Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. , 2010, Cancer research.

[49]  Yurii S. Aulchenko,et al.  Twenty bone mineral density loci identified by large-scale meta-analysis of genome-wide association studies , 2009, Nature Genetics.

[50]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[51]  Kari Stefansson,et al.  Multiple genetic loci for bone mineral density and fractures. , 2008, The New England journal of medicine.

[52]  A Hofman,et al.  Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study , 2008, The Lancet.

[53]  F. Slack,et al.  Oncomirs — microRNAs with a role in cancer , 2006, Nature Reviews Cancer.

[54]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[55]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[56]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[57]  Hong-Wen Deng,et al.  Searching for osteoporosis genes in the post-genome era: progress and challenges , 2003, Osteoporosis International.

[58]  Richard G. Compton,et al.  Supporting Information Section , 2014 .

[59]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..