Pullout strength of anterior spinal instrumentation: a product comparison of seven screws in calf vertebral bodies

A lot of new implant devices for spine surgery are coming onto the market, in which vertebral screws play a fundamental role. The new screws developed for surgery of spine deformities have to be compared to established systems. A biomechanical in vitro study was designed to assess the bone–screw interface fixation strength of seven different screws used for correction of scoliosis in spine surgery. The objectives of the current study were twofold: (1) to evaluate the initial strength at the bone–screw interface of newly developed vertebral screws (Universal Spine System II) compared to established systems (product comparison) and (2) to evaluate the influence of screw design, screw diameter, screw length and bone mineral density on pullout strength. Fifty-six calf vertebral bodies were instrumented with seven different screws (USS II anterior 8.0 mm, USS II posterior 6.2 mm, KASS 6.25 mm, USS II anterior 6.2 mm, USS II posterior 5.2 mm, USS 6.0 mm, USS 5.0 mm). Bone mineral density (BMD) was determined by quantitative computed tomography (QCT). Failure in axial pullout was tested using a displacement-controlled universal test machine. USS II anterior 8.0 mm showed higher pullout strength than all other screws. The difference constituted a tendency (P = 0.108) when compared to USS II posterior 6.2 mm (+19%) and was significant in comparison to the other screws (+30 to +55%, P < 0.002). USS II posterior 6.2 mm showed significantly higher pullout strength than USS 5.0 mm (+30%, P = 0.014). The other screws did not differ significantly in pullout strength. Pullout strength correlated significantly with BMD (P = 0.0015) and vertebral body width/screw length (P < 0.001). The newly developed screws for spine surgery (USS II) show higher pullout strength when compared to established systems. Screw design had no significant influence on pullout force in vertebral body screws, but outer diameter of the screw, screw length and BMD are good predictors of pullout resistance.

[1]  Jae Yong Ahn,et al.  Biomechanical evaluation of anterior and posterior fixations in an unstable calf spine model. , 1997, Spine.

[2]  P. Eysel,et al.  Preoperative Estimation of Screw Fixation Strength in Vertebral Bodies , 1998, Spine.

[3]  A. Minami,et al.  Biomechanical Evaluation of Anterior Spinal Instrumentation Systems for Scoliosis: In Vitro Fatigue Simulation , 2001, Spine.

[4]  T. Tamaki,et al.  Mechanical Stability of the Pedicle Screw Fixation Systems for the Lumbar Spine , 1992, Spine.

[5]  D. E. Swartz,et al.  Physical and mechanical properties of calf lumbosacral trabecular bone. , 1991, Journal of biomechanics.

[6]  Hsiang-Ho Chen,et al.  A biomechanical study of the cortex-anchorage vertebral screw. , 2003, Clinical biomechanics.

[7]  K. Murota,et al.  An Experimental Study on Transpedicular Screw Fixation in Relation to Osteoporosis of the Lumbar Spine , 1991, Spine.

[8]  V K Goel,et al.  Effect of Specimen Fixation Method on Pullout Tests of Pedicle Screws , 1996, Spine.

[9]  B. Bai,et al.  Augmentation of Anterior Vertebral Body Screw Fixation by an Injectable, Biodegradable Calcium Phosphate Bone Substitute , 2001, Spine.

[10]  M. Krismer,et al.  Comparison Between Single‐Screw and Triangulated, Double‐Screw Fixation in Anterior Spine Surgery: A Biomechanical Test , 1996, Spine.

[11]  B. A. Jordan,et al.  The mechanical properties of surgical bone screws and some aspects of insertion practice. , 1972, Injury.

[12]  P. C. Johns,et al.  Relation of vertebral bone screw axial pullout strength to quantitative computed tomographic trabecular bone mineral content. , 1993, Journal of spinal disorders.

[13]  L. Claes,et al.  Load-displacement properties of the thoracolumbar calf spine: Experimental results and comparison to known human data , 2005, European Spine Journal.

[14]  H. Clahsen,et al.  [Factors influencing the anchoring stability of spinal bone screws--an experimental study]. , 2008, Zeitschrift fur Orthopadie und ihre Grenzgebiete.

[15]  H. An,et al.  Strength of anterior vertebral screw fixation in relationship to bone mineral density. , 1995, Journal of spinal disorders.

[16]  奥山 幸一郎,et al.  Stability of transpedicle screwing for the osteoporotic spine , 1994 .

[17]  Kuniyoshi Abumi,et al.  New Anterior Instrumentation for the Management of Thoracolumbar and Lumbar Scoliosis: Application of the Kaneda Two‐Rod System , 1996, Spine.

[18]  K. Kaneda,et al.  A Biomechanical Analysis of Zielke, Kaneda, and Cotrel‐Dubousset Instrumentations in Thoracolumbar Scoliosis A Calf Spine Model , 1991, Spine.

[19]  L. Claes,et al.  MACS-TL-twin-screw , 2002, Der Orthopäde.

[20]  L. Riley,et al.  A Biomechanical Comparison of Calf Versus Cadaver Lumbar Spine Models , 2004, Spine.

[21]  P. McAfee,et al.  Biomechanical analysis of posterior instrumentation systems after decompressive laminectomy. An unstable calf-spine model. , 1988, The Journal of bone and joint surgery. American volume.

[22]  T. Steffen,et al.  Pull-out strength of the suprapedicle claw construct: a biomechanical study , 2005, European Spine Journal.

[23]  D. Deligianni,et al.  Augmentation of anterior transvertebral screws using threaded teflon anchoring. , 1998, Journal of spinal disorders.

[24]  B. S. Richards,et al.  Anterior correction of idiopathic scoliosis using TSRH instrumentation. , 1993, Spine.

[25]  K. Kumano,et al.  Pedicle Screws and Bone Mineral Density , 1994, Spine.

[26]  P. Stern,et al.  Deep Venous Thrombosis After Spinal Surgery , 1993, Spine.

[27]  S. Cook,et al.  Effects of Bone Mineral Density on Pedicle Screw Fixation , 1994, Spine.

[28]  R P Pitto,et al.  Anterior Vertebral Body Screw Pullout Testing With The Hollow Modular Anchorage System - A Comparative in vitro Study. Hohltonnenschrauben als neues Verankerungskonzept an der Wirbelsäule - Lastauszugsversuche als biomechanische Vergleichsstudie , 2003, Biomedizinische Technik. Biomedical engineering.

[29]  M. Weidenbaum,et al.  A Comparative Biomechanical Study of Spinal Fixation Using Cotrel‐Dubousset Instrumentation , 1987, Spine.

[30]  T. Lowe,et al.  Anterior spinal fusion with Zielke instrumentation for idiopathic scoliosis. A frontal and sagittal curve analysis in 36 patients. , 1993, Spine.

[31]  M. Reinhold,et al.  Influence of Screw Positioning in a New Anterior Spine Fixator on Implant Loosening in Osteoporotic Vertebrae , 2006, Spine.

[32]  A. Sherwood,et al.  26 An Anterior Approach to Scoliosis: A Preliminary Report , 1969, Clinical orthopaedics and related research.

[33]  P. Eysel,et al.  [CDH--preliminary report on a primary stable ventral lumbar spine instrumentation]. , 2008, Zeitschrift fur Orthopadie und ihre Grenzgebiete.

[34]  B. Snyder,et al.  Predicting the Integrity of Vertebral Bone Screw Fixation in Anterior Spinal Instrumentation , 1995, Spine.

[35]  A. Shimano,et al.  Biomechanical properties of expander compared with conventional screws. , 2002, Journal of neurosurgery.

[36]  D R Carter,et al.  In vitro evaluation of the loosening characteristics of self-tapped and non-self-tapped cortical bone screws. , 1981, Clinical orthopaedics and related research.

[37]  G R Fernie,et al.  An anatomical comparison of the human and bovine thoracolumbar spine , 1986, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[38]  B. J. Doherty,et al.  A Biomechanical Study of Anterior Thoracolumbar Screw Fixation , 1998, Spine.

[39]  L. Claes,et al.  Biomechanical comparison of calf and human spines. , 1996, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[40]  E. Transfeldt,et al.  Experimental Pullout Testing and Comparison of Variables in Transpedicular Screw Fixation: A Biomechanical Study , 1990, Spine.

[41]  K Okuyama,et al.  Stability of transpedicle screwing for the osteoporotic spine. An in vitro study of the mechanical stability. , 1993, Spine.

[42]  I. Lieberman,et al.  Anterior Vertebral Body Screw Pullout Testing: A Comparison of Zielke, Kaneda, Universal Spine System, and Universal Spine System With Pullout‐Resistant Nut , 1998, Spine.

[43]  J. K. Mayfield,et al.  The Effects of Pedicle Screw Fit: An In Vitro Study , 1994, Spine.

[44]  A. N. Hughes,et al.  A Review of the Factors Affecting the Design, Specification and Material Selection of Screws for Use in Orthopaedic Surgery , 1978 .

[45]  W. Hutton,et al.  Strength of Fixation of Anterior Vertebral Body Screws , 1996, Spine.

[46]  L. Nolte,et al.  Anterior fixation in the osteoporotic spine: cut-out and pullout characteristics of implants , 2002, European Spine Journal.

[47]  J. Dove,et al.  Pedicle screws: axial pull-out strength in the lumbar spine. , 1988, Spine.

[48]  L. Mosekilde,et al.  Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. , 1987, Bone.

[49]  W. Steudel,et al.  Effectiveness of cemented rescue screws for anterior cervical plate fixation. , 2006, Journal of neurosurgery. Spine.

[50]  D. Spengler,et al.  Biomechanical analysis of three surgical approaches for lumbar burst fractures using short-segment instrumentation. , 1993, Spine.

[51]  K. Zielke,et al.  Ventrale Derotationsspondylodese , 2004, Archiv für orthopädische und Unfall-Chirurgie, mit besonderer Berücksichtigung der Frakturenlehre und der orthopädisch-chirurgischen Technik.

[52]  D. E. Swartz,et al.  A Biomechanical Study of the Fatigue Characteristics of Thoracolumbar Fixation Implants in a Calf Spine Model , 1992, Spine.

[53]  P. McAfee,et al.  Anterior spinal fixators. A biomechanical in vitro study. , 1993, Spine.

[54]  W. Steudel,et al.  Insertion torque and pullout force of rescue screws for anterior cervical plate fixation in a fatigued initial pilot hole. , 2004, Journal of neurosurgery. Spine.

[55]  R. Gaines,et al.  Experimental Evaluation of Seven Different Spinal Fracture Internal Fixation Devices Using Nonfailure Stability Testing: The Load‐Sharing and Unstable‐Mechanism Concepts , 1991, Spine.

[56]  W. Steudel,et al.  Screw fixation to the posterior cortical shell does not influence peak torque and pullout in anterior cervical plating , 2002, European Spine Journal.

[57]  J. Schatzker,et al.  The holding power of orthopedic screws in vivo. , 1975, Clinical orthopaedics and related research.

[58]  P. Frandsen,et al.  Holding power of different screws in the femoral head. A study in human cadaver hips. , 1984, Acta orthopaedica Scandinavica.

[59]  D. Nunamaker,et al.  Force measurements in screw fixation. , 1976, Journal of biomechanics.

[60]  島本 則道 Biomechanical evaluation of anterior spinal instrumentation systems for scoliosis : In vitro fatigue simulation , 2002 .

[61]  Vangsness Ct,et al.  In vitro evaluation of the loosening characteristics of self-tapped and non-self-tapped cortical bone screws. , 1981 .