A Methodology for Fast VSWR Protection Implemented in a Monolithic 3-W 55% PAE RF CMOS Power Amplifier

In this paper, the protection of CMOS power amplifiers against load mismatch is addressed. To this purpose, a closed-loop protection circuit is proposed, which is based on a novel current-mode detection and comparison technique. The circuit allows a faster protection lock-in, by enabling peak detection and loop frequency compensation to be performed at the same circuit node, thus reducing the number of low-frequency poles and improving loop bandwidth. The effectiveness of the method is demonstrated through the implementation of a monolithic 0.25-mum 2-V CMOS power amplifier for GSM applications, which can deliver a 3-W output power with 55% overall PAE. The amplifier is able to sustain a 20:1 load VSWR at full power. Excellent RF performance and VSWR ruggedness are hence attained simultaneously, despite a simple common-emitter power stage is used. An experimental reliability assessment allowed the cognizant choice of the maximum drain-gate stress that could be tolerated. Device degradation was characterized by operating a power gain cell at RF, under real-world load and power conditions. Analysis of the degradation data enabled the design of an efficient, yet provably reliable, power amplifier.

[1]  Asad A. Abidi CMOS wireless transceivers: the new wave , 1999, IEEE Commun. Mag..

[2]  J.P. Walko,et al.  RF S-parameter degradation under hot carrier stress , 2004, 2004 IEEE International Reliability Physics Symposium. Proceedings.

[3]  D. Su,et al.  A 2.5-V, 1-W monolithic CMOS RF power amplifier , 1997, Proceedings of CICC 97 - Custom Integrated Circuits Conference.

[4]  E. Xiao Hot carrier effect on CMOS RF amplifiers , 2005, 2005 IEEE International Reliability Physics Symposium, 2005. Proceedings. 43rd Annual..

[5]  R. Meyer Low-power monolithic RF peak detector analysis , 1995, IEEE J. Solid State Circuits.

[6]  Peter Rickert,et al.  Cellular handset integration -- SIP vs. SOC , 2004, Proceedings of the IEEE 2004 Custom Integrated Circuits Conference (IEEE Cat. No.04CH37571).

[7]  Ali Hajimiri,et al.  Fully integrated CMOS power amplifier design using the distributed active-transformer architecture , 2002, IEEE J. Solid State Circuits.

[8]  Antonino Scuderi,et al.  A VSWR-protected silicon bipolar RF power amplifier with soft-slope power control , 2005, IEEE Journal of Solid-State Circuits.

[9]  R. Bishop,et al.  A 5-GHz 20-dBm Power Amplifier With Digitally Assisted AM-PM Correction in a 90-nm CMOS Process , 2006, IEEE Journal of Solid-State Circuits.

[10]  A. K. Ezzeddine,et al.  The high voltage/high power FET (HiVP) , 2003, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2003.

[11]  K. Muhammad,et al.  All-digital PLL and transmitter for mobile phones , 2005, IEEE Journal of Solid-State Circuits.

[12]  M. Zargari,et al.  A single-chip dual-band tri-mode CMOS transceiver for IEEE 802.11a/b/g WLAN , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[13]  H. B. Wood,et al.  Linear amplification using envelope feedback , 1971 .

[14]  P. Cusinato Gain/bandwidth programmable PA control loop for GSM/GPRS quad-band cellular handsets , 2004, IEEE Journal of Solid-State Circuits.

[15]  P. Asbeck,et al.  A 20 dBm Linear RF Power Amplifier Using Stacked Silicon-on-Sapphire MOSFETs , 2006, IEEE Microwave and Wireless Components Letters.

[16]  G. Palmisano,et al.  Degradation Mechanisms in CMOS Power Amplifiers Subject to Radio-Frequency Stress and Comparison to the DC Case , 2007, 2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual.

[17]  F. Svelto,et al.  Analysis of reliability and power efficiency in cascode class-E PAs , 2006, IEEE Journal of Solid-State Circuits.

[18]  Paul R. Gray,et al.  A 1.9-GHz, 1-W CMOS class-E power amplifier for wireless communications , 1999 .

[19]  Ya-Chin King,et al.  Reliability evaluation of class-E and class-a power amplifiers with nanoscaled CMOS technology , 2005 .

[20]  J.S. Yuan,et al.  MOS RF reliability subject to dynamic voltage stress-modeling and analysis , 2005, IEEE Transactions on Electron Devices.

[21]  Domine M. W. Leenaerts,et al.  A 2.4-GHz 0.18-/spl mu/m CMOS self-biased cascode power amplifier , 2003 .

[22]  Asad A. Abidi,et al.  A 900 Mhz Cmos Rf Power Amplifier With Programmable Output , 1994, Proceedings of 1994 IEEE Symposium on VLSI Circuits.

[23]  Giuseppe Palmisano,et al.  Fast Peak Detector with Improved Accuracy and Linearity for High-Frequency Waveform Processing , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[24]  Michiel Steyaert,et al.  A 700-MHz 1-W fully differential CMOS class-E power amplifier , 2002 .

[25]  Hans-Martin Rein,et al.  A single-chip bipolar AGC amplifier with large dynamic range for optical-fiber receivers operating up to 3 Gbit/s , 1989 .

[26]  Giuseppe Palmisano,et al.  A 3W 55% PAE CMOS PA with Closed-Loop 20:1 VSWR Protection , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[27]  J. Stathis,et al.  Dielectric breakdown mechanisms in gate oxides , 2005 .