The Interior Transmission Problem: Spectral Theory

In this paper we are concerned with the interior transmission eigenvalue problem connected with a degenerate boundary problem with limited smoothness assumptions concerning its coefficients and boundary. If $\mathcal{A}_2$ denotes the Hilbert space operator induced by this boundary problem, then in order to derive information concerning the spectral properties of $\mathcal{A}_2$, we are led to consider an auxiliary boundary problem involving powers of the spectral parameter $\lambda$ up to the second order. Under our assumptions we show that the auxiliary boundary problem is parameter-elliptic, and hence we can now appeal to the theory concerning such problems to derive information pertaining to the spectral properties of the quadratic operator pencil $V_2(\lambda)$ induced by the auxiliary boundary problem. Since $\mathcal{A}_2$ is just a linearization of $V_2(\lambda)$, we thus arrive at the spectral properties of $\mathcal{A}_2$. Finally, by appealing to some known results pertaining to the uniqueness ...

[1]  Petri Ola,et al.  Transmission Eigenvalues for Elliptic Operators , 2010, SIAM J. Math. Anal..

[2]  Tosio Kato Perturbation theory for linear operators , 1966 .

[3]  A. Markus,et al.  On Spectral Properties of Elliptic Pseudo-Differential Operators Far from Self-Adjoint Ones , 1989 .

[4]  John Sylvester,et al.  Transmission eigenvalues for degenerate and singular cases , 2012 .

[5]  Petri Ola,et al.  Transmission Eigenvalues for Operators with Constant Coefficients , 2010, SIAM J. Math. Anal..

[6]  M. Vishik,et al.  ELLIPTIC PROBLEMS WITH A PARAMETER AND PARABOLIC PROBLEMS OF GENERAL TYPE , 1964 .

[7]  M. Kreĭn,et al.  Introduction to the theory of linear nonselfadjoint operators , 1969 .

[8]  Evgeny Lakshtanov,et al.  Bounds on positive interior transmission eigenvalues , 2012, 1206.3782.

[9]  Fioralba Cakoni,et al.  The Interior Transmission Eigenvalue Problem , 2010, SIAM J. Math. Anal..

[10]  M. Shubin Pseudodifferential Operators and Spectral Theory , 1987 .

[11]  L. Hörmander,et al.  The Analysis of Linear Partial Differential Operators IV , 1985 .

[12]  Evgeny Lakshtanov,et al.  Remarks on interior transmission eigenvalues, Weyl formula and branching billiards , 2011, 1112.0891.

[13]  S. Agmon Lectures on Elliptic Boundary Value Problems , 1965 .

[14]  G. Grubb,et al.  A global calculus of parameter-dependent pseudodifferential boundary problems inLp Sobolev spaces , 1993 .

[15]  M. Möller,et al.  An elliptic boundary problem for a system involving a discontinuous weight , 2002 .

[16]  John Sylvester,et al.  Discreteness of Transmission Eigenvalues via Upper Triangular Compact Operators , 2011, SIAM J. Math. Anal..

[17]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[18]  Evgeny Lakshtanov,et al.  Ellipticity in the Interior Transmission Problem in Anisotropic Media , 2012, SIAM J. Math. Anal..

[19]  L. Hörmander The Analysis of Linear Partial Differential Operators III , 2007 .

[20]  Fioralba Cakoni,et al.  The Interior Transmission Problem for Regions with Cavities , 2010, SIAM J. Math. Anal..

[21]  Mouez Dimassi,et al.  Upper bound for the counting function of interior transmission eigenvalues , 2013, 1308.2594.

[22]  A. Markus,et al.  Introduction to the Spectral Theory of Polynomial Operator Pencils , 2012 .

[23]  A. G. Kostyuchenko,et al.  Spectral asymptotics of polynomial pencils of differential operators in bounded domains , 1991 .

[24]  Robert T. Seeley,et al.  THE RESOLVENT OF AN ELLIPTIC BOUNDARY PROBLEM. , 1969 .

[25]  E. Lakshtanov,et al.  Applications of elliptic operator theory to the isotropic interior transmission eigenvalue problem , 2012, 1212.6785.

[26]  Fioralba Cakoni,et al.  The Existence of an Infinite Discrete Set of Transmission Eigenvalues , 2010, SIAM J. Math. Anal..

[27]  John Sylvester,et al.  Transmission Eigenvalues , 2008, SIAM J. Math. Anal..

[28]  David Colton,et al.  Dense sets and far field patterns for acoustic waves in an inhomogeneous medium , 1988, Proceedings of the Edinburgh Mathematical Society.

[29]  L. Paivarinta,et al.  Completeness of generalized transmission eigenstates , 2013, 1307.4863.

[30]  Ha Pham,et al.  Weyl asymptotics of the transmission eigenvalues for a constant index of refraction , 2013, 1309.3616.

[31]  S. Agmon On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems , 1962 .