Hebbian LTP in feed-forward inhibitory interneurons and the temporal fidelity of input discrimination

Cortical information processing requires a delicate balance of excitatory and inhibitory signaling. How is this balance preserved during hippocampal memory encoding, which involves NMDA receptor–dependent long term potentiation (LTP)? This form of LTP occurs at synapses between pyramidal neurons but has not been detected in feed-forward inhibitory interneurons. We show that paired pre- and postsynaptic activity evokes pathway-specific LTP in half of rat stratum radiatum interneurons if cytoplasmic integrity is preserved. LTP occurs in aspiny feed-forward interneurons and propagates to pyramidal neurons as an enhancement of disynaptic inhibition. We also show that when LTP is restricted to synapses on pyramidal neurons, the temporal fidelity of synaptic integration and action potential generation in pyramidal cells is compromised. However, when LTP also occurs at synapses on feed-forward interneurons, temporal fidelity is preserved. We propose that Hebbian LTP at synapses driving disynaptic inhibition is necessary to maintain information processing without degradation during memory encoding.

[1]  Dominique Debanne,et al.  Long-Term Enhancement of Neuronal Excitability and Temporal Fidelity Mediated by Metabotropic Glutamate Receptor Subtype 5 , 2003, The Journal of Neuroscience.

[2]  G. Bi,et al.  Synaptic modification by correlated activity: Hebb's postulate revisited. , 2001, Annual review of neuroscience.

[3]  H. Wigström,et al.  Long‐term potentiation involves enhanced synaptic excitation relative to synaptic inhibition in guinea‐pig hippocampus. , 1987, The Journal of physiology.

[4]  P. Jonas,et al.  PTP and LTP at a hippocampal mossy fiber-interneuron synapse , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[5]  S. Redman,et al.  Long-term plasticity at excitatory synapses on aspinous interneurons in area CA1 lacks synaptic specificity. , 1998, Journal of neurophysiology.

[6]  R. Yuste,et al.  Ca2+ imaging of mouse neocortical interneurone dendrites: Contribution of Ca2+‐permeable AMPA and NMDA receptors to subthreshold Ca2+dynamics , 2003, The Journal of physiology.

[7]  J. Lacaille,et al.  Mechanisms of selective long-term potentiation of excitatory synapses in stratum oriens/alveus interneurons of rat hippocampal slices. , 1995, Journal of neurophysiology.

[8]  Pankaj Sah,et al.  Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala , 1998, Nature.

[9]  P. Somogyi,et al.  Large variability in synaptic n-methyl-d-aspartate receptor density on interneurons and a comparison with pyramidal-cell spines in the rat hippocampus , 2003, Neuroscience.

[10]  P. Andersen,et al.  Possible mechanisms for long‐lasting potentiation of synaptic transmission in hippocampal slices from guinea‐pigs. , 1980, The Journal of physiology.

[11]  Mu-ming Poo,et al.  Bidirectional Changes in Spatial Dendritic Integration Accompanying Long-Term Synaptic Modifications , 2003, Neuron.

[12]  K. Tóth,et al.  Stratum radiatum giant cells: a type of principal cell in the rat hippocampus , 1998, The European journal of neuroscience.

[13]  T. Sejnowski,et al.  Synaptic plasticity in morphologically identified CA1 stratum radiatum interneurons and giant projection cells , 2000, Hippocampus.

[14]  T. Bliss,et al.  A decrease in firing threshold observed after induction of the EPSP-spike (E-S) component of long-term potentiation in rat hippocampal slices , 2004, Experimental Brain Research.

[15]  Rafael Yuste,et al.  Calcium Microdomains in Aspiny Dendrites , 2003, Neuron.

[16]  M. Scanziani,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001, Science.

[17]  R. Miles,et al.  How Many Subtypes of Inhibitory Cells in the Hippocampus? , 1998, Neuron.

[18]  F Asztely,et al.  Dissociation between long‐term potentiation and associated changes in field epsp waveform in the hippocampal CA1 region: An in vitro study in guinea pig brain slices , 1994, Hippocampus.

[19]  R. Nicoll,et al.  A persistent postsynaptic modification mediates long-term potentiation in the hippocampus , 1988, Neuron.

[20]  P. Castillo,et al.  Heterosynaptic LTD of Hippocampal GABAergic Synapses A Novel Role of Endocannabinoids in Regulating Excitability , 2003, Neuron.

[21]  D. Clifford,et al.  Long-term potentiation during whole-cell recording in rat hippocampal slices , 1993, Neuroscience.

[22]  Joseph E LeDoux,et al.  Heterosynaptic Long-Term Potentiation of Inhibitory Interneurons in the Lateral Amygdala , 2004, The Journal of Neuroscience.

[23]  Jin-Hui Wang,et al.  Calcium‐calmodulin signalling pathway up‐regulates glutamatergic synaptic function in non‐pyramidal, fast spiking rat hippocampal CA1 neurons , 2001, The Journal of physiology.

[24]  Rafael Yuste,et al.  From form to function: calcium compartmentalization in dendritic spines , 2000, Nature Neuroscience.

[25]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[26]  J. Lacaille,et al.  A hebbian form of long-term potentiation dependent on mGluR1a in hippocampal inhibitory interneurons , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[27]  T. Freund,et al.  Interneurons Containing Calretinin Are Specialized to Control Other Interneurons in the Rat Hippocampus , 1996, The Journal of Neuroscience.

[28]  Chris J. McBain,et al.  Glutamatergic synapses onto hippocampal interneurons: precision timing without lasting plasticity , 1999, Trends in Neurosciences.

[29]  R. Yuste,et al.  Ca 2 + imaging of mouse neocortical interneurone dendrites : Contribution of Ca 2 +-permeable AMPA and NMDA receptors to subthreshold Ca 2 + dynamics , 2003 .

[30]  M. Sur,et al.  Invariant computations in local cortical networks with balanced excitation and inhibition , 2005, Nature Neuroscience.

[31]  R. G. Morris D.O. Hebb: The Organization of Behavior, Wiley: New York; 1949 , 1999, Brain Research Bulletin.

[32]  H. Wigström,et al.  Postsynaptic control of hippocampal long-term potentiation. , 1986, Journal de physiologie.

[33]  L. Voronin,et al.  Long-term potentiation in the hippocampus , 1983, Neuroscience.

[34]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[35]  J. Lübke,et al.  Postsynaptic Calcium Influx at Single Synaptic Contacts between Pyramidal Neurons and Bitufted Interneurons in Layer 2/3 of Rat Neocortex Is Enhanced by Backpropagating Action Potentials , 2004, The Journal of Neuroscience.

[36]  S. B. Kater,et al.  Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. , 1994, Annual review of neuroscience.

[37]  D. Madison,et al.  Locally distributed synaptic potentiation in the hippocampus. , 1994, Science.

[38]  Dean V. Buonomano,et al.  Timing and Balance of Inhibition Enhance the Effect of Long-Term Potentiation on Cell Firing , 2004, The Journal of Neuroscience.

[39]  J M Jester,et al.  Associative EPSP‐‐spike potentiation induced by pairing orthodromic and antidromic stimulation in rat hippocampal slices. , 1995, The Journal of physiology.

[40]  J. Kauer,et al.  Hippocampal Interneurons Express a Novel Form of Synaptic Plasticity , 1997, Neuron.

[41]  R. Horn,et al.  Muscarinic activation of ionic currents measured by a new whole-cell recording method , 1988, The Journal of general physiology.

[42]  A. Konnerth,et al.  Long-term potentiation and functional synapse induction in developing hippocampus , 1996, Nature.

[43]  C. McBain,et al.  Long-Term Potentiation in Distinct Subtypes of Hippocampal Nonpyramidal Neurons , 1996, The Journal of Neuroscience.

[44]  Eric R Kandel,et al.  Calcineurin-Mediated LTD of GABAergic Inhibition Underlies the Increased Excitability of CA1 Neurons Associated with LTP , 2000, Neuron.

[45]  R. Dingledine,et al.  Voltage-controlled plasticity at GluR2-deficient synapses onto hippocampal interneurons. , 2004, Journal of neurophysiology.