Computer Modeling of Nanostructured Materials

Publisher Summary This chapter discusses computer modeling of nanostructured materials. Computer modeling has played an especially important role in developing the current understanding of nanometer-scale structures and processes. Among the many scientific and technological advances provided by the current emphasis on nanotechnology is the ability for computer modeling and experiment to characterize phenomena on a common scale. Atomic-level computer modeling is commonly used to explore and predict new phenomena that can be probed experimentally, to suggest new materials and structures with unique and desirable properties, to provide insight into the results of experiments, to generate data for larger-scale analysis, and to test scaling laws and analytic theories. The two standard methods for modeling nanometer-scale systems are molecular dynamics and Monte Carlo simulation.

[1]  P. C. Clapp,et al.  Nanoparticle sintering simulations , 1998 .

[2]  O. Leupold,et al.  Size and oxidation effects on the vibrational properties of nanocrystalline α-Fe , 2002 .

[3]  U. Landman,et al.  Melting of gold clusters , 1999 .

[4]  Gregory J. Wagner,et al.  Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .

[5]  M. Baskes,et al.  Modified embedded-atom potentials for cubic materials and impurities. , 1992, Physical review. B, Condensed matter.

[6]  Simon R. Phillpot,et al.  Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation , 2001 .

[7]  J. Q. Broughton,et al.  Concurrent coupling of length scales: Methodology and application , 1999 .

[8]  K. Koga,et al.  Size- and temperature-dependent structural transitions in gold nanoparticles. , 2004, Physical review letters.

[9]  Chun Lu,et al.  Molecular dynamics simulations of the preparation and deformation of nanocrystalline copper , 2004 .

[10]  Yinmin M Wang,et al.  Atomistic simulation studies on deformation mechanism of nanocrystalline cobalt , 2005 .

[11]  D. Pettifor,et al.  Bounded analytic bond-order potentials for sigma and pi bonds , 2000, Physical review letters.

[12]  Rajiv K. Kalia,et al.  DYNAMICS OF OXIDATION OF ALUMINUM NANOCLUSTERS USING VARIABLE CHARGE MOLECULAR-DYNAMICS SIMULATIONS ON PARALLEL COMPUTERS , 1999 .

[13]  Peter M. Derlet,et al.  Grain-boundary sliding in nanocrystalline fcc metals , 2001 .

[14]  A. Mukherjee,et al.  Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments? , 2005 .

[15]  H. V. Swygenhoven,et al.  COMPETING PLASTIC DEFORMATION MECHANISMS IN NANOPHASE METALS , 1999 .

[16]  A. Nakano,et al.  Sintering, structure, and mechanical properties of nanophase SiC: A molecular-dynamics and neutron scattering study , 2000 .

[17]  Subra Suresh,et al.  Mechanical behavior of nanocrystalline metals and alloys , 2003 .

[18]  Rajiv K. Kalia,et al.  Oxidation of aluminum nanoclusters , 2005 .

[19]  H. Van Swygenhoven,et al.  Low-frequency vibrational properties of nanocrystalline materials. , 2001, Physical review letters.

[20]  J. Tersoff,et al.  New empirical model for the structural properties of silicon. , 1986, Physical review letters.

[21]  D. Farkas,et al.  Molecular Dynamics Investigation on the Fracture Behavior of Nanocrystalline Fe , 2002 .

[22]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[23]  S. Phillpot,et al.  Scaling behavior of grain-rotation-induced grain growth. , 2002, Physical review letters.

[24]  A. Nakano,et al.  Multiple grains in nanocrystals: effect of initial shape and size on transformed structures under pressure. , 2004, Physical review letters.

[25]  W. G. Hoover molecular dynamics , 1986, Catalysis from A to Z.

[26]  S. Phillpot,et al.  Mechanisms of grain growth in nanocrystalline fcc metals by molecular-dynamics simulation. , 2001 .

[27]  P. Feibelman,et al.  Diffusion path for an Al adatom on Al(001). , 1990, Physical review letters.

[28]  S. Phillpot,et al.  Linking atomistic and mesoscale simulations of nanocrystalline materials: quantitative validation for the case of grain growth , 2003 .

[29]  D. Brenner,et al.  Diffusion-accomodated rigid-body translations along grain boundaries in nanostructured materials , 2003 .

[30]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[31]  William A. Curtin,et al.  Plastic deformation mechanisms in nanocrystalline columnar grain structures , 2005 .

[32]  Raymond F. Smith,et al.  Ultrahigh Strength in Nanocrystalline Materials Under Shock Loading , 2005, Science.

[33]  M. Finnis,et al.  A simple empirical N-body potential for transition metals , 1984 .

[34]  Sergey Edward Lyshevski,et al.  Contributions of Molecular Modeling to Nanometer-Scale Science and Technology , 2002 .

[35]  D Farkas,et al.  Atomistic mechanisms of fatigue in nanocrystalline metals. , 2005, Physical review letters.

[36]  Yinmin M Wang,et al.  Enhanced tensile ductility and toughness in nanostructured Cu , 2002 .

[37]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[38]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[39]  D. Wolf,et al.  Molecular‐dynamics study of the synthesis and characterization of a fully dense, three‐dimensional nanocrystalline material , 1995 .

[40]  Donald W. Brenner,et al.  The Art and Science of an Analytic Potential , 2000 .

[41]  K. Jacobsen,et al.  Softening of nanocrystalline metals at very small grain sizes , 1998, Nature.

[42]  S. Phillpot,et al.  Theory of diffusion-accommodated grain rotation in columnar polycrystalline microstructures , 2001 .

[43]  Priya Vashishta,et al.  A Crossover in the Mechanical Response of Nanocrystalline Ceramics , 2005, Science.

[44]  S. Hendy,et al.  Static, transient, and dynamic phase coexistence in metal nanoclusters. , 2005, The Journal of chemical physics.

[45]  H. Van Swygenhoven,et al.  Stacking fault energies and slip in nanocrystalline metals , 2004, Nature materials.

[46]  S. Phillpot,et al.  A structural model for grain boundaries in nanocrystalline materials , 1995 .

[47]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[48]  Donald W. Brenner,et al.  Quantum‐Based Analytic Interatomic Forces and Materials Simulation , 2007 .

[49]  H. Van Swygenhoven,et al.  Dimples on Nanocrystalline Fracture Surfaces As Evidence for Shear Plane Formation , 2003, Science.

[50]  F. Delogu Structural and energetic properties of unsupported Cu nanoparticles from room temperature to the melting point : Molecular dynamics simulations , 2005 .

[51]  Christoph Dellago,et al.  Melting of icosahedral gold nanoclusters from molecular dynamics simulations. , 2005, The Journal of chemical physics.

[52]  Noam Bernstein,et al.  Spanning the length scales in dynamic simulation , 1998 .

[53]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[54]  Srivastava,et al.  Anisotropic spread of surface dimer openings in the initial stages of the epitaxial growth of Si on Si{100} , 1989, Physical review letters.

[55]  M. Parrinello,et al.  Crystal structure and pair potentials: A molecular-dynamics study , 1980 .

[56]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[57]  L. Curtiss,et al.  Equilibrium morphology of face-centered cubic gold nanoparticles >3 nm and the shape changes induced by temperature. , 2005, The journal of physical chemistry. B.

[58]  Peter M. Derlet,et al.  Dislocation activity and nano-void formation near crack tips in nanocrystalline Ni , 2005 .

[59]  S. Foiles Embedded-Atom and Related Methods for Modeling Metallic Systems , 1996 .

[60]  Wangyu Hu,et al.  Molecular dynamics simulations of grain growth in nanocrystalline Ag , 2006 .

[61]  A. Voter,et al.  Extending the Time Scale in Atomistic Simulation of Materials Annual Re-views in Materials Research , 2002 .

[62]  R. Selvam,et al.  Molecular dynamics simulations of grain size stabilization in nanocrystalline materials by addition of dopants , 2006 .

[63]  Vibrational Properties of Nanoscale Materials: From Nanoparticles to Nanocrystalline Materials , 2003, cond-mat/0308549.

[64]  D. Wolf,et al.  Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation , 2004, Nature materials.

[65]  P. Cummings,et al.  Molecular dynamics simulation of titanium dioxide nanoparticle sintering. , 2005, The journal of physical chemistry. B.

[66]  T. Germann,et al.  Microscopic View of Structural Phase Transitions Induced by Shock Waves , 2002, Science.

[67]  G. Duscher,et al.  Effect of Pb on the mechanical properties of nanocrystalline Al , 2006 .

[68]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.