Embedded Software Reliability Modeling with COTS Hardware Components

There has recently been a trend that IT industry is united with traditional industries such as military, aviation, automobile, and medical industry. Therefore, embedded software which controls hardware of the system should guarantee the high reliability, availability, and maintainability. To guarantee these properties, there are many attempts to develop the embedded software based on COTS (Commercial Off The Shelf) hardware components. However, it can cause additional faults due to software/hardware interactions beside general software faults in this methodology. We called the faults, Linkage Fault. These faults have high severity that makes overall system shutdown although their occurrence frequency is extremely low. In this paper, we propose a new software reliability model which considers those linkage faults in embedded software development with COTS hardware components. We use the Bayesian Analysis and Markov Chain Monte-Cairo method to validate the model. In addition, we analyze real linkage fault data to support the results of the theoretical model.