Room-temperature hydrogen-induced resistivity response of Pd/Mg–Ni film

The structure and the response of the effective electrical resistivity 〈ρ〉 in hydrogenation–dehydrogenation processes of palladium-coated/magnesium-nickel (Pd/Mg–Ni) films were investigated as functions of Mg-to-Ni ratio, substrate temperature, and thickness of Pd overcoat. Films of noncrystalline structures with various Mg-to-Ni ratios showed prominent hydrogen-(H-)induced switching effect of 〈ρ〉. A film is supposed to contain segregated noncrystalline regions of different Mg-to-Ni ratios. The regions of an Mg-to-Ni ratio close to 2 are responsible for the switching processes. At room temperature, a dehydrogenation process is much slower than a hydrogenation process. Crystallization hindered the H-induced switching effect of 〈ρ〉. The use of a thicker Pd overcoat accelerated the change of 〈ρ〉 in the initial hydrogenating process but diminished the contrast. Results led to some discussions on the mechanisms governing the switching effects.

[1]  Kazuki Yoshimura,et al.  Metal buffer layer inserted switchable mirrors , 2008 .

[2]  R. Gremaud,et al.  Critical composition dependence of the hydrogenation of Mg2 +/-delta Ni thin films , 2007 .

[3]  M. Okada,et al.  Titanium-Buffer-Layer-Inserted Switchable Mirror Based on Mg–Ni Alloy Thin Film , 2006 .

[4]  Kazuki Yoshimura,et al.  Optical switching property of Pd-capped Mg-Ni alloy thin films prepared by magnetron sputtering , 2006 .

[5]  Thomas J. Richardson,et al.  Metal hydride switchable mirrors : Factors influencing dynamic range and stability , 2006 .

[6]  R. Griessen,et al.  Combinatorial method for the development of a catalyst promoting hydrogen uptake , 2005 .

[7]  T. Richardson,et al.  Optical and Electrical Properties of Mg ∕ Ni Alloy Subjected to Electrochemical Hydrogenation , 2005 .

[8]  S. Lebègue,et al.  Electronic and optical properties of α, γ, and β phases of MgH2: A first-principles GW investigation , 2005 .

[9]  A. V. D. Eerden,et al.  Structure of the Mg2Ni switchable mirror: an EXAFS investigation , 2005 .

[10]  S. V. Narasimhan,et al.  Solid state synthesis of Mg–Ni ferrite and characterization by XRD and XPS , 2004 .

[11]  B. Hjörvarsson,et al.  Hydrogen uptake and optical properties of sputtered Mg-Ni thin films , 2004 .

[12]  R. Griessen,et al.  Structural and optical properties of Mg2NiHx switchable mirrors upon hydrogen loading , 2004 .

[13]  M. Tazawa,et al.  Room-Temperature Hydrogen Sensor Based on Pd-Capped Mg2Ni Thin Film , 2004 .

[14]  R. Griessen,et al.  Mg–Ni–H films as selective coatings: Tunable reflectance by layered hydrogenation , 2004, cond-mat/0401082.

[15]  J. Rector,et al.  The properties of pulsed laser deposited YH2 films for switchable devices , 2003 .

[16]  H. Arwin,et al.  Optical properties of MgH2 measured in situ by ellipsometry and spectrophotometry , 2003, cond-mat/0305418.

[17]  Kazuki Yoshimura,et al.  Optical switching of Mg-rich Mg–Ni alloy thin films , 2002 .

[18]  P. Marcus,et al.  Oxidation of magnesium , 2002 .

[19]  R. Griessen,et al.  Tunable reflectance Mg–Ni–H films , 2002 .

[20]  Thomas J. Richardson,et al.  Mixed metal films with switchable optical properties , 2002 .

[21]  S. Orimo,et al.  Materials science of Mg-Ni-based new hydrides , 2001 .

[22]  Robert Kostecki,et al.  Switchable mirrors based on nickel–magnesium films , 2001 .

[23]  R. C. King,et al.  Handbook of X Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of Xps Data , 1995 .

[24]  M. Rubina,et al.  X-ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin Films , 2004 .