Sparse initial data identification for parabolic PDE and its finite element approximations

We address the problem of inverse source identification for parabolic equations from the optimal control viewpoint employing measures of minimal norm as initial data. We adopt the point of view of approximate controllability so that the target is not required to be achieved exactly but only in an approximate sense. We prove an approximate inversion result and derive a characterization of the optimal initial measures by means of duality and the minimization of a suitable quadratic functional on the solutions of the adjoint system. We prove the sparsity of the optimal initial measures showing that they are supported in sets of null Lebesgue measure. As a consequence, approximate controllability can be achieved efficiently by means of controls that are activated in a finite number of pointwise locations. Moreover, we discuss the finite element numerical approximation of the control problem providing a convergence result of the corresponding optimal measures and states as the discretization parameters tend to zero.

[1]  Roland Herzog,et al.  Optimality Conditions and Error Analysis of Semilinear Elliptic Control Problems with L1 Cost Functional , 2012, SIAM J. Optim..

[2]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[3]  R. Cooke Real and Complex Analysis , 2011 .

[4]  Karl Kunisch,et al.  Optimal Control of Semilinear Elliptic Equations in Measure Spaces , 2014, SIAM J. Control. Optim..

[5]  Karl Kunisch,et al.  Measure Valued Directional Sparsity for Parabolic Optimal Control Problems , 2014, SIAM J. Control. Optim..

[6]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[7]  Karl Kunisch,et al.  Parabolic Control Problems in Measure Spaces with Sparse Solutions , 2013, SIAM J. Control. Optim..

[8]  V. Thomée,et al.  Maximum norm stability and error estimates in parabolic finite element equations , 1980 .

[9]  Boris Vexler,et al.  Optimal A Priori Error Estimates of Parabolic Optimal Control Problems with Pointwise Control , 2013, SIAM J. Numer. Anal..

[10]  Rolf Rannacher,et al.  A Priori Error Estimates for Finite Element Discretizations of Parabolic Optimization Problems with Pointwise State Constraints in Time , 2011, SIAM J. Control. Optim..

[11]  Stanley Osher,et al.  Heat source identification based on l1 constrained minimization , 2014 .

[12]  E. Casas,et al.  Spike Controls for Elliptic and Parabolic PDE , 2013 .

[13]  Jay Kovats Real analytic solutions of parabolic equations with time-measurable coefficients , 2001 .

[14]  Boris Vexler,et al.  A Priori Error Analysis for Discretization of Sparse Elliptic Optimal Control Problems in Measure Space , 2013, SIAM J. Control. Optim..

[15]  Karl Kunisch,et al.  Parabolic control problems in space-time measure spaces , 2016 .

[16]  Enrique Zuazua,et al.  ON THE DENSITY OF THE RANGE OF THE SEMIGROUP FOR SEMILINEAR HEAT EQUATIONS , 1995 .

[17]  Enrique Zuazua,et al.  The cost of approximate controllability for heat equations: the linear case , 2000, Advances in Differential Equations.

[18]  Anita Hansbo Strong Stability and Non-smooth Data Error Estimates for Discretizations of Linear Parabolic Problems , 2002 .

[19]  Enrique Zuazua,et al.  Spike controls for elliptic and parabolic PDEs , 2013, Syst. Control. Lett..

[20]  Karl Kunisch,et al.  Approximation of Elliptic Control Problems in Measure Spaces with Sparse Solutions , 2012, SIAM J. Control. Optim..

[21]  J. Lions,et al.  Sur l'unicité réctrograde dans les problèmes mixtes paraboliques. , 1960 .

[22]  C. Bardos,et al.  Sur l'unicité retrograde des equations paraboliques et quelques questions voisines , 1973 .

[23]  J. Griepentrog Maximal regularity for nonsmooth parabolic problems in Sobolev-Morrey spaces , 2007 .

[24]  Roland Herzog,et al.  Directional Sparsity in Optimal Control of Partial Differential Equations , 2012, SIAM J. Control. Optim..

[25]  Fredi Tröltzsch,et al.  Second-Order and Stability Analysis for State-Constrained Elliptic Optimal Control Problems with Sparse Controls , 2014, SIAM J. Control. Optim..

[26]  S. Superiore,et al.  On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients , 1986 .

[27]  Jean-Pierre Raymond,et al.  Hamiltonian Pontryagin's Principles for Control Problems Governed by Semilinear Parabolic Equations , 1999 .

[28]  Gerd Wachsmuth,et al.  Convergence and regularization results for optimal control problems with sparsity functional , 2011 .

[29]  K. Kunisch,et al.  A duality-based approach to elliptic control problems in non-reflexive Banach spaces , 2011 .

[30]  Wei Gong,et al.  A Priori Error Analysis for Finite Element Approximation of Parabolic Optimal Control Problems with Pointwise Control , 2014, SIAM J. Control. Optim..

[31]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[32]  E. Casas Pontryagin's Principle for State-Constrained Boundary Control Problems of Semilinear Parabolic Equations , 1997 .

[33]  Georg Stadler,et al.  Elliptic optimal control problems with L1-control cost and applications for the placement of control devices , 2009, Comput. Optim. Appl..