Inorganic Reactive Sulfur-Nitrogen Species: Intricate Release Mechanisms or Cacophony in Yellow, Blue and Red?

Since the heydays of Reactive Sulfur Species (RSS) research during the first decade of the Millennium, numerous sulfur species involved in cellular regulation and signalling have been discovered. Yet despite the general predominance of organic species in organisms, recent years have also seen the emergence of inorganic reactive sulfur species, ranging from inorganic polysulfides (HSx−/Sx2−) to thionitrous acid (HSNO) and nitrosopersulfide (SSNO−). These inorganic species engage in a complex interplay of reactions in vitro and possibly also in vivo. Employing a combination of spectrophotometry and sulfide assays, we have investigated the role of polysulfanes from garlic during the release of nitric oxide (•NO) from S-nitrosoglutathione (GSNO) in the absence and presence of thiol reducing agents. Our studies reveal a distinct enhancement of GSNO decomposition by compounds such as diallyltrisulfane, which is most pronounced in the presence of cysteine and glutathione and presumably proceeds via the initial release of an inorganic mono- or polysulfides, i.e., hydrogen sulfide (H2S) or HSx−, from the organic polysulfane. Albeit being of a preliminary nature, our spectrophotometric data also reveals a complicated underlying mechanism which appears to involve transient species such as SSNO−. Eventually, more in depth studies are required to further explore the underlying chemistry and wider biological and nutritional implications of this interplay between edible garlic compounds, reductive activation, inorganic polysulfides and their interplay with •NO storage and release.

[1]  W. Koppenol,et al.  Signaling by sulfur-containing molecules. Quantitative aspects. , 2017, Archives of biochemistry and biophysics.

[2]  J. Fukuto,et al.  The chemical biology of the persulfide (RSSH)/perthiyl (RSS·) redox couple and possible role in biological redox signaling. , 2016, Free radical biology & medicine.

[3]  Michael D. Pluth,et al.  The Intersection of NO and H2S: Persulfides Generate NO from Nitrite through Polysulfide Formation. , 2016, Inorganic chemistry.

[4]  M. Ufnal,et al.  Intracolonic hydrogen sulfide lowers blood pressure in rats. , 2016, Nitric oxide : biology and chemistry.

[5]  D. Scherlis,et al.  Nitrosodisulfide [S2NO]− (perthionitrite) is a true intermediate during the “cross-talk” of nitrosyl and sulfide , 2016 .

[6]  M. Feelisch,et al.  Nitrosopersulfide (SSNO-) targets the Keap-1/Nrf2 redox system. , 2016, Pharmacological research.

[7]  D. Scherlis,et al.  Nitrosodisulfide [S2NO]- (perthionitrite) is a true intermediate during the "cross-talk" of nitrosyl and sulfide. , 2016, Physical chemistry chemical physics : PCCP.

[8]  M. Ufnal,et al.  Gut Bacteria and Hydrogen Sulfide: The New Old Players in Circulatory System Homeostasis , 2016, Molecules.

[9]  D. Kim‐Shapiro,et al.  Reactions between nitrosopersulfide and heme proteins. , 2016, Free radical biology & medicine.

[10]  J. Stanton,et al.  Spontaneous and Selective Formation of HSNO, a Crucial Intermediate Linking H2S and Nitroso Chemistries. , 2016, Journal of the American Chemical Society.

[11]  K. Olson,et al.  Garlic oil polysulfides: H2S- and O2-independent prooxidants in buffer and antioxidants in cells. , 2016, American journal of physiology. Regulatory, integrative and comparative physiology.

[12]  A. Butler,et al.  Inorganic sulfur-nitrogen compounds: from gunpowder chemistry to the forefront of biological signaling. , 2016, Dalton transactions.

[13]  S. Bari,et al.  New Features of the NO/H2S Cross Talk: A Chemical Basis , 2016 .

[14]  L. Lamattina Gasotransmitters in Plants The Rise of a New Paradigm in Cell Signaling , 2016 .

[15]  T. Akaike,et al.  The chemical biology of hydropersulfides (RSSH): Chemical stability, reactivity and redox roles. , 2015, Archives of biochemistry and biophysics.

[16]  M. Montenarh,et al.  A scent of therapy: Synthetic polysulfanes with improved physico-chemical properties induce apoptosis in human cancer cells. , 2015, International journal of oncology.

[17]  M. W. Wong,et al.  Diallyl Trisulfide Is a Fast H2S Donor, but Diallyl Disulfide Is a Slow One: The Reaction Pathways and Intermediates of Glutathione with Polysulfides. , 2015, Organic letters.

[18]  M. Singer,et al.  Key bioactive reaction products of the NO/H2S interaction are S/N-hybrid species, polysulfides, and nitroxyl , 2015, Proceedings of the National Academy of Sciences.

[19]  I. Ivanović‐Burmazović,et al.  Does perthionitrite (SSNO(-)) account for sustained bioactivity of NO? A (bio)chemical characterization. , 2015, Inorganic chemistry.

[20]  M. Feelisch,et al.  The reaction products of sulfide and S-nitrosoglutathione are potent vasorelaxants. , 2015, Nitric oxide : biology and chemistry.

[21]  P. Nagy Mechanistic chemical perspective of hydrogen sulfide signaling. , 2015, Methods in enzymology.

[22]  K. Ried,et al.  Potential of garlic (Allium sativum) in lowering high blood pressure: mechanisms of action and clinical relevance , 2014, Integrated blood pressure control.

[23]  M. Montenarh,et al.  Synthetic polysulfane derivatives induce cell cycle arrest and apoptotic cell death in human hematopoietic cancer cells. , 2014, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[24]  M. Kelm,et al.  Nitrosopersulfide (SSNO−) accounts for sustained NO bioactivity of S-nitrosothiols following reaction with sulfide , 2014, Redox biology.

[25]  C. Jacob,et al.  Low molecular thiols, pH and O2 modulate H2S-induced S-nitrosoglutathione decomposition - •NO release. , 2013, General physiology and biophysics.

[26]  Katarzyna A. Broniowska,et al.  The chemical biology of S-nitrosothiols. , 2012, Antioxidants & redox signaling.

[27]  A. Slusarenko,et al.  The biology of reactive sulfur species (RSS). , 2012, Plant physiology and biochemistry : PPB.

[28]  S. Lippard,et al.  Chemical Characterization of the Smallest S-Nitrosothiol, HSNO; Cellular Cross-talk of H2S and S-Nitrosothiols , 2012, Journal of the American Chemical Society.

[29]  C. Jacob Redox signalling via the cellular thiolstat. , 2011, Biochemical Society transactions.

[30]  Laura L. Perissinotti,et al.  Addition and redox reactivity of hydrogen sulfides (H2S/HS⁻) with nitroprusside: new chemistry of nitrososulfide ligands. , 2011, Chemistry.

[31]  M. Diederich,et al.  Interactions of polysulfanes with components of red blood cells , 2011 .

[32]  M. Diederich,et al.  Chemical properties and mechanisms determining the anti-cancer action of garlic-derived organic sulfur compounds. , 2011, Anti-cancer agents in medicinal chemistry.

[33]  S. Cacanyiova,et al.  The aqueous garlic, onion and leek extracts release nitric oxide from S-nitrosoglutathione and prolong relaxation of aortic rings. , 2011, General physiology and biophysics.

[34]  R. Banerjee,et al.  Redox Biochemistry of Hydrogen Sulfide* , 2010, The Journal of Biological Chemistry.

[35]  Kate S Carroll,et al.  Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells. , 2009, ACS chemical biology.

[36]  K. Olson Is hydrogen sulfide a circulating "gasotransmitter" in vertebrate blood? , 2009, Biochimica et biophysica acta.

[37]  O. Krizanova,et al.  H2S and HS− donor NaHS releases nitric oxide from nitrosothiols, metal nitrosyl complex, brain homogenate and murine L1210 leukaemia cells , 2008, Pflügers Archiv - European Journal of Physiology.

[38]  Robert W. Mills,et al.  Hydrogen sulfide mediates the vasoactivity of garlic , 2007, Proceedings of the National Academy of Sciences.

[39]  M. Z. Ashraf,et al.  Endothelium mediated vasorelaxant response of garlic in isolated rat aorta: role of nitric oxide. , 2004, Journal of ethnopharmacology.

[40]  O. Lev,et al.  Kinetics of Disproportionation of Inorganic Polysulfides in Undersaturated Aqueous Solutions at Environmentally Relevant Conditions , 2003 .

[41]  N. Benjamin,et al.  The ingestion of inorganic nitrate increases gastric S-nitrosothiol levels and inhibits platelet function in humans. , 2002, Nitric oxide : biology and chemistry.

[42]  D. L. Williams,et al.  Reactivity of sulfur nucleophiles towards S-nitrosothiols , 2000 .

[43]  D. L. Williams,et al.  The Chemistry of S-Nitrosothiols , 1999 .

[44]  S. Tannenbaum,et al.  The chemistry of the S-nitrosoglutathione/glutathione system. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[45]  R. Steudel Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes , 1996 .

[46]  D. N. Harpp,et al.  A Simple Method to Prepare Unsymmetrical Di- Tri- and Tetrasulfides. , 1994 .

[47]  F. Seel,et al.  Über die Umsetzung von Sulfiden mit Stickstoffmonoxid in Wäßrigen Lösungen , 1988 .

[48]  J. Schuh,et al.  Untersuchung der Umsetzung von Schwefel mit Natriumnitrit in DMF, DMSO und HMPT , 1986 .

[49]  G. Simon,et al.  PNP-Perthionitrit und PNP-Monothionitrit / PNP-Perthionitrite and PNP-M onothionitrite , 1985 .

[50]  F. Seel,et al.  Über die Umsetzung von Polysulfiden mit Stickstoffmonoxid in nichtwäßrigen Lösungsmitteln — Nitrosodisulfide / The Reaction of Polysulfides with Nitrogen Monoxide in Non-Aqueous Solvents — Nitrosodisulfides , 1985 .

[51]  B. Krebs,et al.  PNP-Perthionitrit und PNP-Monothionitrit , 1985 .

[52]  W. Giggenbach Optical spectra and equilibrium distribution of polysulfide ions in aqueous solution at 20.deg. , 1972 .

[53]  J. Swan,et al.  954. New syntheses of trisulphides , 1961 .

[54]  G. Schwarzenbach,et al.  Die Acidität der Sulfane und die Zusammensetzung wässeriger Polysulfidlösungen , 1960 .

[55]  J. K. Fogo,et al.  Spectrophotometric Determination of Hydrogen Sulfide , 1949 .