Recent progress in α1-adrenergic receptor research

Abstractα1-Adrenergic receptors (AR) play an important role in the regulation of physiological responses mediated by norepinephrine and epinephrine, particularly in the cardiovascular system. The three cloned α1-AR subtypes (α1A, α1B, and α1D) are G protein-coupled receptors that signal through the Gq/11 signaling pathway, each showing distinct pharmacological properties and tissue distributions. However, due to the lack of highly subtype-selective drugs, the functional roles of individual subtypes are still not clear. Development of new subtype-specific drugs will greatly facilitate the identification of the functions of each subtype. Conopeptide p-TIA has been found to be a new α1B-AR selective antagonist with different modes of inhibition at α1-AR subtypes. In addition, recent studies using genetically engineered mice have shed some light on α1-AR functions in vivo, especially in the cardiovascular system and brain. Several proteins have been shown to interact directly with particular α1-AR, and may be important in regulating receptor function. Receptor heterodimerization has been shown to be important for cell surface expression, signaling and internalization. These new observations are likely to help elucidate the functional roles of individual α1-AR subtypes.

[1]  R. Graham,et al.  alpha 1-adrenergic receptor subtypes. Molecular structure, function, and signaling. , 1996, Circulation research.

[2]  R. Lewis,et al.  Differential antagonism by conotoxin rho-TIA of contractions mediated by distinct alpha1-adrenoceptor subtypes in rat vas deferens, spleen and aorta. , 2005, European Journal of Pharmacology.

[3]  E. Foster,et al.  The α1A/C- and α1B-adrenergic receptors are required for physiological cardiac hypertrophy in the double-knockout mouse , 2003 .

[4]  C. Hague,et al.  Heterodimerization with β2-Adrenergic Receptors Promotes Surface Expression and Functional Activity of α1D-Adrenergic Receptors , 2005, Journal of Pharmacology and Experimental Therapeutics.

[5]  J. Glowinski,et al.  α1b-Adrenergic Receptors Control Locomotor and Rewarding Effects of Psychostimulants and Opiates , 2002, The Journal of Neuroscience.

[6]  C. Hague,et al.  The N Terminus of the Human α1D-Adrenergic Receptor Prevents Cell Surface Expression , 2004, Journal of Pharmacology and Experimental Therapeutics.

[7]  R. Lewis,et al.  Subtype-selective noncompetitive or competitive inhibition of human alpha1-adrenergic receptors by rho-TIA. , 2004, The Journal of biological chemistry.

[8]  G. Tsujimoto,et al.  Gene deletion of dopamine beta-hydroxylase and alpha1-adrenoceptors demonstrates involvement of catecholamines in vascular remodeling. , 2004, American journal of physiology. Heart and circulatory physiology.

[9]  G. Köhr,et al.  Role of heteromer formation in GABAB receptor function. , 1999, Science.

[10]  Alan Wise,et al.  Heterodimerization is required for the formation of a functional GABAB receptor , 1998, Nature.

[11]  G. Milligan,et al.  High-affinity interactions between human α1A-adrenoceptor C-terminal splice variants produce homo- and heterodimers but do not generate the α1L-adrenoceptor , 2004 .

[12]  G. Milligan,et al.  High-affinity interactions between human alpha1A-adrenoceptor C-terminal splice variants produce homo- and heterodimers but do not generate the alpha1L-adrenoceptor. , 2004, Molecular pharmacology.

[13]  H. Glossmann,et al.  (+)-Niguldipine binds with very high affinity to Ca2+ channels and to a subtype of α1-adrenoceptors , 1989 .

[14]  Graeme Milligan,et al.  Dimers of Class A G Protein-coupled Receptors Function via Agonist-mediated Trans-activation of Associated G Proteins* , 2003, Journal of Biological Chemistry.

[15]  I. Creese,et al.  Characterization of alpha 1-adrenergic receptor subtypes in rat brain: a reevaluation of [3H]WB4104 and [3H]prazosin binding. , 1986, Molecular pharmacology.

[16]  F. Cogé,et al.  Update on human α1-adrenoceptor subtype signaling and genomic organization , 2004 .

[17]  P. Marin,et al.  GPCR interacting proteins (GIP). , 2004, Pharmacology & therapeutics.

[18]  R. Lefkowitz,et al.  Regulation of G protein-coupled receptor signaling by scaffold proteins. , 2002, Circulation research.

[19]  G. Tsujimoto,et al.  Cloning, functional expression and tissue distribution of human α 1C‐adrenoceptor splice variants , 1995, FEBS letters.

[20]  H. Glossmann,et al.  (+)-Niguldipine binds with very high affinity to Ca2+ channels and to a subtype of alpha 1-adrenoceptors. , 1989, European journal of pharmacology.

[21]  Lakshmi A. Devi,et al.  G-protein-coupled receptor heterodimerization modulates receptor function , 1999, Nature.

[22]  A. Vicentic,et al.  Biochemistry and Pharmacology of Epitope-Tagged α1-Adrenergic Receptor Subtypes , 2002 .

[23]  C. Hague,et al.  Selective Inhibition of α1A-Adrenergic Receptor Signaling by RGS2 Association with the Receptor Third Intracellular Loop* , 2005, Journal of Biological Chemistry.

[24]  R. Hall β-Adrenergic receptors and their interacting proteins , 2004 .

[25]  R. Chang,et al.  Design and Synthesis of Novel α1a Adrenoceptor-Selective Dihydropyridine Antagonists for the Treatment of Benign Prostatic Hyperplasia , 1998 .

[26]  F. Schenk,et al.  A Behavioral Study of Alpha-1b Adrenergic Receptor Knockout Mice: Increased Reaction to Novelty and Selectively Reduced Learning Capacities , 2001, Neurobiology of Learning and Memory.

[27]  K. Minneman,et al.  Adrenergic Pharmacology: Focus on the Central Nervous System , 2001, CNS Spectrums.

[28]  F. Cogé,et al.  Update on human alpha1-adrenoceptor subtype signaling and genomic organization. , 2004, Trends in pharmacological sciences.

[29]  A. Baker,et al.  Abnormal myocardial contraction in alpha(1A)- and alpha(1B)-adrenoceptor double-knockout mice. , 2003, Journal of molecular and cellular cardiology.

[30]  L. Abuin,et al.  The Adaptor Complex 2 Directly Interacts with the α1b-Adrenergic Receptor and Plays a Role in Receptor Endocytosis* , 2003, Journal of Biological Chemistry.

[31]  M. Piascik,et al.  Alpha1-adrenergic receptors: new insights and directions. , 2001, The Journal of pharmacology and experimental therapeutics.

[32]  I. Najm,et al.  Gene expression profile of neurodegeneration induced by alpha1B-adrenergic receptor overactivity: NMDA/GABAA dysregulation and apoptosis. , 2003, Brain : a journal of neurology.

[33]  R. Lewis,et al.  Differential antagonism by conotoxin ρ-TIA of contractions mediated by distinct α1-adrenoceptor subtypes in rat vas deferens, spleen and aorta , 2005 .

[34]  P. Abel,et al.  Heterogeneity of alpha 1-adrenergic receptors revealed by chlorethylclonidine. , 1987, Molecular pharmacology.

[35]  R. Lefkowitz,et al.  Heptahelical Receptor Signaling: Beyond the G Protein Paradigm , 1999, The Journal of cell biology.

[36]  C. Hague,et al.  Alpha(1)-adrenergic receptor subtypes: non-identical triplets with different dancing partners? , 2003, Life sciences.

[37]  G. Tsujimoto,et al.  Gene deletion of dopamine β-hydroxylase and α1-adrenoceptors demonstrates involvement of catecholamines in vascular remodeling , 2004 .

[38]  P. Greengard,et al.  Spinophilin regulates Ca2+ signalling by binding the N-terminal domain of RGS2 and the third intracellular loop of G-protein-coupled receptors , 2005, Nature Cell Biology.

[39]  G. Tsujimoto,et al.  The α1D-adrenergic receptor directly regulates arterial blood pressure via vasoconstriction , 2002 .

[40]  C. Hague,et al.  Heterodimerization with beta2-adrenergic receptors promotes surface expression and functional activity of alpha1D-adrenergic receptors. , 2005, The Journal of pharmacology and experimental therapeutics.

[41]  I. Muramatsu,et al.  Identification of α1-adrenoceptor subtypes in the dog prostate , 1993, Urological Research.

[42]  A. Hancock α1 Adrenoceptor subtypes: A synopsis of their pharmacology and molecular biology , 1996 .

[43]  J. Knauber,et al.  Decreased exploratory activity and impaired passive avoidance behaviour in mice deficient for the α1b-adrenoceptor , 2000, European Neuropsychopharmacology.

[44]  R. Lefkowitz,et al.  Myocardial expression of a constitutively active alpha 1B-adrenergic receptor in transgenic mice induces cardiac hypertrophy. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[45]  K. Minneman,et al.  Specific Interactions Between gC1qR and α1‐Adrenoceptor Subtypes , 2003, Journal of receptor and signal transduction research.

[46]  P. Gonzalez-Cabrera,et al.  The alpha(1B)-adrenergic receptor decreases the inotropic response in the mouse Langendorff heart model. , 2003, Cardiovascular research.

[47]  A. Ford,et al.  Molecular cloning, genomic characterization and expression of novel human α1A‐adrenoceptor isoforms , 1998 .

[48]  N. Ryba,et al.  Mammalian Sweet Taste Receptors , 2001, Cell.

[49]  G. Tsujimoto,et al.  Characteristics of behavioral abnormalities in α1d-adrenoceptors deficient mice , 2004, Behavioural Brain Research.

[50]  M. Zuscik,et al.  Hypotension, Autonomic Failure, and Cardiac Hypertrophy in Transgenic Mice Overexpressing the α1B-Adrenergic Receptor* , 2001, The Journal of Biological Chemistry.

[51]  C. Hague,et al.  Cell Surface Expression of α1D-Adrenergic Receptors Is Controlled by Heterodimerization with α1B-Adrenergic Receptors* , 2004, Journal of Biological Chemistry.

[52]  M. Piascik,et al.  α1-Adrenergic Receptors: New Insights and Directions , 2001 .

[53]  K. Minneman,et al.  Subtype-specific dimerization of alpha 1-adrenoceptors: effects on receptor expression and pharmacological properties. , 2003, Molecular pharmacology.

[54]  M. Foretz,et al.  Impaired Glucose Homeostasis in Mice Lacking the α1b-Adrenergic Receptor Subtype* , 2004, Journal of Biological Chemistry.

[55]  R. Graham,et al.  Targeted Inactivation of Gh/Tissue Transglutaminase II* , 2001, The Journal of Biological Chemistry.

[56]  G. Tsujimoto,et al.  Responses to noxious stimuli in mice lacking &agr;1d-adrenergic receptors , 2003, Neuroreport.

[57]  Scott Sands,et al.  Overexpression of the α1B-adrenergic receptor causes apoptotic neurodegeneration: Multiple system atrophy , 2000, Nature Medicine.

[58]  D. Quartermain,et al.  Emerging Evidence for a Central Epinephrine-Innervated α1-Adrenergic System that Regulates Behavioral Activation and is Impaired in Depression , 2003, Neuropsychopharmacology.

[59]  D. Morilak,et al.  Overexpression of the alpha1B-adrenergic receptor causes apoptotic neurodegeneration: multiple system atrophy. , 2000, Nature medicine.

[60]  G. Tsujimoto,et al.  Role of the α1D-Adrenegric Receptor in the Development of Salt-Induced Hypertension , 2002 .

[61]  G. Lembo,et al.  Decreased blood pressure response in mice deficient of the alpha1b-adrenergic receptor. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[62]  A. Baker,et al.  Abnormal Myocardial Contraction in α1A– and α1B–adrenoceptor double-knockout mice , 2003 .

[63]  R. Graham,et al.  Gh: a GTP-binding protein with transglutaminase activity and receptor signaling function. , 1994, Science.

[64]  H. Zhong,et al.  Alpha1-adrenoceptor subtypes. , 1999, European journal of pharmacology.

[65]  Gozoh Tsujimoto,et al.  Recent advances in α1-adrenoceptor pharmacology , 2003 .

[66]  R. Lewis,et al.  Subtype-selective Noncompetitive or Competitive Inhibition of Human α1-Adrenergic Receptors by ρ-TIA* , 2004, Journal of Biological Chemistry.

[67]  G. Tsujimoto,et al.  Characteristics of behavioral abnormalities in alpha1d-adrenoceptors deficient mice. , 2004, Behavioural brain research.

[68]  R. Graham,et al.  Allosteric α1-Adrenoreceptor Antagonism by the Conopeptide ρ-TIA* , 2003, Journal of Biological Chemistry.

[69]  P. Simpson,et al.  Knockout of the α1A/C-adrenergic receptor subtype: The α1A/C is expressed in resistance arteries and is required to maintain arterial blood pressure , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[70]  A. Vicentic,et al.  Biochemistry and pharmacology of epitope-tagged alpha(1)-adrenergic receptor subtypes. , 2002, The Journal of pharmacology and experimental therapeutics.

[71]  T. Kenakin,et al.  G Protein-Coupled Receptor Allosterism and Complexing , 2002, Pharmacological Reviews.

[72]  Horst Vogel,et al.  Oligomerization of the α1a- and α1b-Adrenergic Receptor Subtypes , 2003, Journal of Biological Chemistry.

[73]  H. Zhong,et al.  α1-Adrenoceptor subtypes , 1999 .

[74]  J. McGrath,et al.  A knockout approach indicates a minor vasoconstrictor role for vascular alpha1B-adrenoceptors in mouse. , 2002, Physiological genomics.

[75]  J. Colston,et al.  Hepatocytes from α1B‐adrenoceptor knockout mice reveal compensatory adrenoceptor subtype substitution , 2004, British journal of pharmacology.

[76]  M. Piascik,et al.  Regulation of the cellular localization and signaling properties of the alpha(1B)- and alpha(1D)-adrenoceptors by agonists and inverse agonists. , 2000, Molecular pharmacology.

[77]  D. Quartermain,et al.  Pharmacological evidence for the role of central alpha 1B-adrenoceptors in the motor activity and spontaneous movement of mice , 2001, Neuropharmacology.

[78]  D. Craik,et al.  Two new classes of conopeptides inhibit the α1-adrenoceptor and noradrenaline transporter , 2001, Nature Neuroscience.

[79]  K. Minneman,et al.  Interaction of neuronal nitric oxide synthase with alpha1-adrenergic receptor subtypes in transfected HEK-293 cells , 2002, BMC pharmacology.

[80]  G. Tsujimoto,et al.  The alpha(1D)-adrenergic receptor directly regulates arterial blood pressure via vasoconstriction. , 2002, The Journal of clinical investigation.

[81]  P. Greengard,et al.  Spinophilin regulates Ca 2 + signalling by binding the N-terminal domain of RGS 2 and the third intracellular loop of G-protein-coupled receptors , 2005 .

[82]  R. Hall Beta-adrenergic receptors and their interacting proteins. , 2004, Seminars in Cell and Developmental Biology.

[83]  R. Graham,et al.  α1-Adrenergic Receptor Signaling via Gh Is Subtype Specific and Independent of Its Transglutaminase Activity* , 1996, The Journal of Biological Chemistry.

[84]  G. Gross,et al.  5-Methyl-urapidil discriminates between subtypes of the alpha 1-adrenoceptor. , 1988, European Journal of Pharmacology.

[85]  E. Foster,et al.  The alpha(1A/C)- and alpha(1B)-adrenergic receptors are required for physiological cardiac hypertrophy in the double-knockout mouse. , 2003, The Journal of clinical investigation.

[86]  G. Tsujimoto,et al.  Differences in the cellular localization and agonist-mediated internalization properties of the alpha(1)-adrenoceptor subtypes. , 2002, Molecular pharmacology.

[87]  K. Minneman,et al.  Novel antagonists for α1-adrenoceptor subtypes , 2004 .

[88]  K. Minneman,et al.  N-terminal truncation of human alpha1D-adrenoceptors increases expression of binding sites but not protein. , 2003, European journal of pharmacology.

[89]  R. Graham,et al.  Targeted &agr;1A-Adrenergic Receptor Overexpression Induces Enhanced Cardiac Contractility but not Hypertrophy , 2001, Circulation research.

[90]  G. Tsujimoto,et al.  Interaction of the α1B-Adrenergic Receptor with gC1q-R, a Multifunctional Protein* , 1999, The Journal of Biological Chemistry.

[91]  G. Tsujimoto,et al.  Transgenic studies of α1-adrenergic receptor subtype function , 2002 .

[92]  G. Tsujimoto,et al.  Transgenic studies of alpha(1)-adrenergic receptor subtype function. , 2002, Life sciences.

[93]  A. Goetz,et al.  BMY 7378 is a selective antagonist of the D subtype of α1-adrenoceptors , 1995 .

[94]  G. Gross,et al.  5-Methyl-urapidil discriminates between subtypes of the α1-adrenoceptor , 1988 .

[95]  Tan Zhang,et al.  Yeast two-hybrid screening for proteins that interact with alpha1-adrenergic receptors. , 2004, Acta pharmacologica Sinica.

[96]  R. Petrovska,et al.  Addition of a signal peptide sequence to the α1D‐adrenoceptor gene increases the density of receptors, as determined by [3H]‐prazosin binding in the membranes , 2005, British journal of pharmacology.

[97]  Gozoh Tsujimoto,et al.  Recent advances in alpha1-adrenoceptor pharmacology. , 2003, Pharmacology & therapeutics.