Dispersion phenomena of liquid droplet impacting on the single fiber with different wettabilities

[1]  D. Ingham,et al.  Analysis and prediction of the gas-liquid interfacial area for droplets impact on solid surfaces , 2020, Applied Thermal Engineering.

[2]  Jianfeng Chen,et al.  Dispersion behaviors of droplet impacting on wire mesh and process intensification by surface micro/nano-structure , 2020, Chemical Engineering Science.

[3]  Shenglin Yan,et al.  A study on a droplet impact on a fiber during coalescence-separation: Phenomena and models , 2020 .

[4]  Jianfeng Chen,et al.  Enhancing liquid droplet breakup by hydrophobic wire mesh: Visual study and application in a rotating packed bed , 2019 .

[5]  A. Amirfazli,et al.  Droplet impact: Viscosity and wettability effects on splashing. , 2019, Journal of colloid and interface science.

[6]  Jianfeng Chen,et al.  Liquid jet impaction on the single‐layer stainless steel wire mesh in a rotating packed bed reactor , 2019, AIChE Journal.

[7]  Jianfeng Chen,et al.  Impact phenomena of liquid droplet passing through stainless steel wire mesh units , 2019, Chemical Engineering Science.

[8]  Biao Zhou,et al.  Comparisons and validations of contact angle models , 2018 .

[9]  Jianfeng Chen,et al.  A hydrophobic wire mesh for better liquid dispersion in air , 2017 .

[10]  Jianfeng Chen,et al.  Modeling and experimental studies of mass transfer in the cavity zone of a rotating packed bed , 2017 .

[11]  K. Lee,et al.  Experimental investigation of liquid distribution in a packed column with structured packing under permanent tilt and roll motions using electrical resistance tomography , 2017 .

[12]  Gance Dai,et al.  Synergistic effect of droplet self-adjustment and rod bank internal on fluid distribution in a WFGD spray column , 2017 .

[13]  Yong Luo,et al.  Liquid flow pattern transition, droplet diameter and size distribution in the cavity zone of a rotating packed bed: A visual study , 2017 .

[14]  Jun Yao,et al.  Investigation of the Dynamic Contact Angle Using a Direct Numerical Simulation Method. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[15]  Wonjung Kim,et al.  Drop impact on a fiber , 2016 .

[16]  Howard A Stone,et al.  Drop impact on a flexible fiber. , 2015, Soft matter.

[17]  M. Marengo,et al.  VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model. , 2014, Advances in colloid and interface science.

[18]  E. Sher,et al.  Off-centered impact of water droplets on a thin horizontal wire , 2013 .

[19]  Véronique Roig,et al.  Experimental study of liquid spreading in structured packings , 2012 .

[20]  C. Duchesne,et al.  Hydrodynamics of cocurrent two‐phase flows in slanted porous media—Modulation of pulse flow via bed obliquity , 2010 .

[21]  F. Lapierre,et al.  To grate a liquid into tiny droplets by its impact on a hydrophobic microgrid , 2009, 0912.0035.

[22]  I. Hutchings,et al.  Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface , 2009 .

[23]  Christophe Clanet,et al.  Drops impacting inclined fibers. , 2009, Journal of colloid and interface science.

[24]  F. Schönfeld,et al.  Dynamic contact angles in CFD simulations , 2009 .

[25]  D. Quéré,et al.  Off-centre impact on a horizontal fibre , 2009 .

[26]  Christophe Clanet,et al.  Capturing drops with a thin fiber. , 2004, Journal of colloid and interface science.

[27]  R. Hoffman A study of the advancing interface. I. Interface shape in liquid—gas systems , 1975 .

[28]  M. Berry The molecular mechanism of surface tension , 1971 .

[29]  D. K. Owens,et al.  Estimation of the surface free energy of polymers , 1969 .

[30]  Lothar Spiegel,et al.  Distillation Columns with Structured Packings in the Next Decade , 2003 .