Spectral beam splitting for efficient conversion of solar energy - A review

Spectral beam splitting is a promising method to achieve high efficiency solar energy conversion. Its potential applications include multi-junction PV receivers, hybrid collectors and even biomass production. Although spectral splitting receivers can achieve high theoretical conversion efficiencies, they have not yet evolved to the commercial level. In this paper, we provide a review on the recently published research in this field and discuss the drawbacks associated with practical applications. Suggestions are made which we believe will lead to improvements in optical efficiency (including geometrical limitations) and the fabrication costs of spectrally splitting solar receivers.

[1]  José L. Bernal-Agustín,et al.  High concentration photovoltaic systems applying III–V cells , 2009 .

[3]  P. Hu,et al.  Optical modeling for a two-stage parabolic trough concentrating photovoltaic/thermal system using spectral beam splitting technology , 2010 .

[4]  Mahieddine Emziane,et al.  Evaluation of a combined CPV and TPV system under high DNI , 2011, 2011 IEEE GCC Conference and Exhibition (GCC).

[5]  S. C. Kaushik,et al.  Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology , 2012 .

[6]  Joseph E. Ford,et al.  Planar micro-optic solar concentrator. , 2010, Optics express.

[7]  P. Ruden,et al.  Efficiency of a laterally engineered architecture for photovoltaics , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[8]  Sarah R. Kurtz,et al.  High-Efficiency Multijunction Solar Cells , 2007 .

[9]  D. Depoy,et al.  Thermodynamic analysis of thermophotovoltaic efficiency and power density tradeoffs , 2001 .

[10]  Marius Peters,et al.  Light trapping, a new approach to spectrum splitting , 2008 .

[11]  Matteo Chiesa,et al.  Photovoltaic-thermoelectric hybrid systems: A general optimization methodology , 2008 .

[12]  Jose E. Castillo,et al.  Spectral-shifting and holographic planar concentrators for use with photovoltaic solar cells , 2007, SPIE Optics + Photonics for Sustainable Energy.

[13]  David R. Mills,et al.  Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review , 2004 .

[14]  Marco Stefancich,et al.  Concentrating PV system based on spectral separation of solar radiation , 2009 .

[15]  Glenn Rosenberg,et al.  Analysis and design of holographic solar concentrators , 2008, Optics + Photonics for Sustainable Energy.

[16]  Robert A. Taylor,et al.  Feasibility of nanofluid-based optical filters. , 2013, Applied optics.

[17]  Tin-Tai Chow,et al.  A Review on Photovoltaic/Thermal Hybrid Solar Technology , 2010, Renewable Energy.

[18]  K. Sumathy,et al.  Photovoltaic thermal module concepts and their performance analysis: A review , 2010 .

[19]  J. Michel,et al.  Single element spectral splitting solar concentrator for multiple cells CPV system. , 2012, Optics express.

[20]  Performance-Based Analysis of a Double-Receiver Photovoltaic System , 2011 .

[21]  R. J. Schwartz,et al.  Compact spectrum splitting photovoltaic module with high efficiency , 2011 .

[22]  Mingjiang Ni,et al.  Optimal Design and Performance Analysis of a Low Concentrating Photovoltaic/Thermal System Using the Direct Absorption Collection Concept , 2010, 2010 Asia-Pacific Power and Energy Engineering Conference.

[23]  H. Macleod,et al.  Thin-Film Optical Filters , 1969 .

[24]  Glenn Rosenberg,et al.  Holographic elements in solar concentrator and collection systems , 2009, Optics + Photonics for Sustainable Energy.

[25]  Martin A. Green,et al.  Solar cell efficiency tables (version 39) , 2012 .

[26]  Robert A. Taylor,et al.  Nanofluid-based optical filter optimization for PV/T systems , 2012, Light: Science & Applications.

[27]  David R. McKenzie,et al.  The design of broadband, wide-angle interference filters for solar concentrating systems , 2006 .

[28]  Theoretical Analysis of Spectral Selective Transmission Coatings for Solar Energy PV System , 2013 .

[29]  A. Goetzberger,et al.  Spectral splitting module geometry that utilizes light trapping , 2013 .

[30]  Joseph E. Ford,et al.  Orthogonal and secondary concentration in planar micro-optic solar collectors. , 2011, Optics express.

[31]  S. Kurtz,et al.  50% Efficient Solar Cell Architectures and Designs , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[32]  T. J. Coutts,et al.  A review of recent advances in thermophotovoltaics , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[33]  D. Mckenzie,et al.  Flat-topped broadband rugate filters. , 2006, Applied optics.

[34]  Duncan T. Moore,et al.  Milestones Toward 50% Efficient Solar Cell Modules , 2007 .

[35]  M. Emziane,et al.  A photovoltaic system with three solar cells and a band-stop optical filter , 2011 .

[36]  L. W. James,et al.  Multigap solar cell requirements and the performance of AlGaAs and Si cells in concentrated sunlight , 1978 .

[37]  Sarah Kurtz,et al.  A two junction, four terminal photovoltaic device for enhanced light to electric power conversion using a low-cost dichroic mirror , 2009 .

[38]  G. Peharz,et al.  Energy payback time of the high‐concentration PV system FLATCON® , 2005 .

[39]  Masafumi Yamaguchi,et al.  III–V compound multi-junction solar cells: present and future , 2003 .

[40]  M. Woodhouse,et al.  Residential, Commercial, and Utility-Scale Photovoltaic (PV) System Prices in the United States: Current Drivers and Cost-Reduction Opportunities , 2012 .

[41]  E. Shifman,et al.  Toward 40% and higher solar cells in a new Cassegrainian PV module , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[42]  Benedikt Bläsi,et al.  Spectrally-Selective Photonic Structures for PV Applications , 2010 .

[43]  Cen Ke-fa,et al.  A Dielectric Multilayer Filter for Combining Photovoltaics with a Stirling Engine for Improvement of the Efficiency of Solar Electricity Generation , 2011 .

[44]  Vernie Everett,et al.  Experimental testing of SiNx/SiO2 thin film filters for a concentrating solar hybrid PV/T collector , 2014 .

[45]  G. Wang,et al.  The Design of Beam Splitter for Two-Stage Reflective Spectral Beam Splitting Concentrating PV/Thermal System , 2011, 2011 Asia-Pacific Power and Energy Engineering Conference.

[46]  Mahieddine Emziane,et al.  A novel concentrating photovoltaic system with two separate receivers , 2011, 2011 IEEE GCC Conference and Exhibition (GCC).

[47]  Gregory J. Kolb,et al.  Current and Future Costs for Parabolic Trough and Power Tower Systems in the US Market: Preprint , 2010 .

[48]  C. Dey,et al.  Cooling of photovoltaic cells under concentrated illumination: a critical review , 2005 .

[49]  Neil Robertson,et al.  Characterization and reduction of reabsorption losses in luminescent solar concentrators. , 2010, Applied optics.

[50]  Martin A. Green,et al.  Solar Energy Conversion Toward 1 Terawatt , 2008 .

[51]  Jason H. Karp,et al.  Planar micro-optic solar concentration using multiple imaging lenses into a common slab waveguide , 2009, Optics + Photonics for Sustainable Energy.

[52]  Shulong Lu,et al.  Light-splitting photovoltaic system utilizing two dual-junction solar cells , 2010 .

[53]  J. Coventry Performance of a concentrating photovoltaic/thermal solar collector , 2005 .

[54]  M. Dickinson,et al.  Enhanced photosynthetic output via dichroic beam-sharing , 2012, Biotechnology Letters.

[55]  Taxol-induced alteration of intracellular amino-acid profile related to human cervical carcinoma HeLa cell death , 2011, Biotechnology Letters.

[56]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[57]  Jean-Pierre Fleurial,et al.  Thermoelectric power generation materials: Technology and application opportunities , 2009 .

[58]  Soteris A. Kalogirou,et al.  Photovoltaic thermal (PV/T) collectors: A review , 2007 .

[59]  David R. Mills,et al.  A new strategy for improved spectral performance in solar power plants , 2006 .

[60]  Todd Otanicar,et al.  Band-Gap Tuned Direct Absorption for a Hybrid Concentrating Solar Photovoltaic/Thermal System , 2011 .

[61]  Duncan T. Moore,et al.  Design, assembly, and testing of a spectral splitting solar concentrator module , 2010, International Optical Design Conference.

[62]  M. R. Jacobson,et al.  Liquid and thin-film filters for hybrid solar energy conversion systems , 1987 .

[63]  K. Emery,et al.  Lateral spectrum splitting concentrator photovoltaics: direct measurement of component and submodule efficiency , 2012 .

[64]  Ibrahim Dincer,et al.  Performance analysis of photovoltaic systems: A review , 2009 .

[65]  Todd Otanicar,et al.  Band-Gap Tuned Direct Absorption for Hybrid Concentrating Solar Photovoltaic/Thermal System , 2011 .

[66]  Agustín M. Delgado-Torres Solar thermal heat engines for water pumping: An update , 2009 .

[67]  Jason H. Karp,et al.  Multiband solar concentrator using transmissive dichroic beamsplitting , 2008, Optics + Photonics for Sustainable Energy.

[68]  B. Richards,et al.  Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review , 2009 .

[69]  E. Skoplaki,et al.  ON THE TEMPERATURE DEPENDENCE OF PHOTOVOLTAIC MODULE ELECTRICAL PERFORMANCE: A REVIEW OF EFFICIENCY/ POWER CORRELATIONS , 2009 .

[70]  P. Hu,et al.  Modeling for Two-Stage Dish Concentrating Spectral Beam Splitting Photovoltaic/Thermal System , 2009, 2009 Asia-Pacific Power and Energy Engineering Conference.

[71]  A. Segal,et al.  Hybrid concentrated photovoltaic and thermal power conversion at different spectral bands , 2004 .

[72]  P. Würfel,et al.  Theoretical limits of thermophotovoltaic solar energy conversion , 2003 .

[73]  Allen M. Barnett,et al.  High Efficiency, Spectrum Splitting Solar Cell Assemblies: Design, Measurement and Analysis , 2010 .

[74]  Fouad Kiamilev,et al.  Improved outdoor measurements for Very High Efficiency Solar Cell sub-modules , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[75]  G. Peharz,et al.  Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency , 2011 .

[76]  Martin A. Green,et al.  Utilization of Direct and Diffuse Sunlight in a Dye-Sensitized Solar Cell — Silicon Photovoltaic Hybrid Concentrator System , 2011 .

[77]  D. Lynch,et al.  A solar photovoltaic system with ideal efficiency close to the theoretical limit. , 2012, Optics express.

[79]  E. Shifman,et al.  Demonstration of a 33% Efficient Cassegrainian Solar Module , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[80]  L. Fraas,et al.  Dual focus Cassegrainian module can achieve ≫45% efficiency , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[81]  Zhifeng Wang,et al.  Numerical analysis and optimization of a spectrum splitting concentration photovoltaic–thermoelectric hybrid system , 2012 .

[83]  Gunnar A. Niklasson,et al.  Spectrally selective reflector surfaces for heat reduction in concentrator solar cells: modeling and applications of TiO₂:Nb-based thin films. , 2011, Applied optics.

[84]  A. Meyer,et al.  Luminescent Solar Concentrators--a review of recent results. , 2008, Optics express.

[85]  Ha Herbert Zondag,et al.  Flat-plate PV-Thermal collectors and systems : a review , 2008 .

[86]  Tao Wang,et al.  Investigation of a broadband TiO2/SiO2 optical thin-film filter for hybrid solar power systems , 2012 .

[87]  S. Kusek,et al.  Concentrating Photovoltaic Module Testing at NREL's Concentrating Solar Radiation Users Facility , 2003 .

[88]  Kenji Araki,et al.  Multi-junction III-V solar cells: current status and future potential , 2005 .

[89]  M. Green,et al.  Forty three per cent composite split‐spectrum concentrator solar cell efficiency , 2010 .