Sparse recovery with pre-Gaussian random matrices

For an m×N underdetermined system of linear equations with independent pre-Gaussian random coefficients satisfying simple moment conditions, it is proved that the s-sparse solutions of the system can be found by l1-minimization under the optimal condition m≥csln(eN/s). The main ingredient of the proof is a variation of a classical Restricted Isometry Property, where the inner norm becomes the l1-norm and the outer norm depends on probability distributions.

[1]  U. Haagerup The best constants in the Khintchine inequality , 1981 .

[2]  G. Paouris Concentration of mass on convex bodies , 2006 .

[3]  V. Milman,et al.  Concentration Property on Probability Spaces , 2000 .

[4]  V. Milman,et al.  On a geometric inequality , 1988 .

[5]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[6]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[7]  Geometric Probability and Random Cotype 2 , 2004 .

[8]  M. Talagrand,et al.  Probability in Banach spaces , 1991 .

[9]  B. M. Fulk MATH , 1992 .

[10]  Rémi Gribonval,et al.  Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.

[11]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[12]  Lie Wang,et al.  Shifting Inequality and Recovery of Sparse Signals , 2010, IEEE Transactions on Signal Processing.

[13]  S. Mendelson,et al.  Uniform Uncertainty Principle for Bernoulli and Subgaussian Ensembles , 2006, math/0608665.

[14]  V. Buldygin,et al.  Metric characterization of random variables and random processes , 2000 .

[15]  S. Foucart A note on guaranteed sparse recovery via ℓ1-minimization , 2010 .

[16]  M. Rudelson,et al.  On sparse reconstruction from Fourier and Gaussian measurements , 2008 .

[17]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[18]  Holger Rauhut,et al.  The Gelfand widths of ℓp-balls for 0 , 2010, ArXiv.

[19]  R. Gribonval,et al.  Highly sparse representations from dictionaries are unique and independent of the sparseness measure , 2007 .

[20]  P. Gänssler Weak Convergence and Empirical Processes - A. W. van der Vaart; J. A. Wellner. , 1997 .

[21]  R. Adamczak,et al.  Restricted Isometry Property of Matrices with Independent Columns and Neighborly Polytopes by Random Sampling , 2009, 0904.4723.

[22]  R. Chartrand,et al.  Restricted isometry properties and nonconvex compressive sensing , 2007 .

[23]  Piotr Indyk,et al.  Combining geometry and combinatorics: A unified approach to sparse signal recovery , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[24]  Holger Rauhut,et al.  The Gelfand widths of lp-balls for 0p<=1 , 2010, J. Complex..

[25]  T. Figiel,et al.  The dimension of almost spherical sections of convex bodies , 1976 .

[26]  S. Foucart,et al.  Sparsest solutions of underdetermined linear systems via ℓq-minimization for 0 , 2009 .

[27]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[28]  G. Pisier The volume of convex bodies and Banach space geometry , 1989 .

[29]  M. Ledoux The concentration of measure phenomenon , 2001 .

[30]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.