The Poisson Multiple-Access Channel

The Poisson multiple-access channel (MAC) models many-to-one optical communication through an optical fiber or in free space. For this model we compute the capacity region for the two-user case as a function of the allowed peak power. Focusing on the maximum throughput we generalize our results to the case where the users are subjected to an additional average-power constraint and to the many-users case. We show that contrary to the Gaussian MAC, in the Poisson MAC the maximum throughput is bounded in the number of users. We quantify the loss that is incurred when time-division multiple access (TDMA) is employed and show that while in the two-user case and in the absence of dark current the penalty is rather mild, the penalty can be quite severe in the many-users case in the presence of large dark current. We introduce a generalized TDMA technique that mitigates this loss to a large extent.

[1]  Sergio Verdú,et al.  Multiple-access channels with point-process observations: Optimum demodulation , 1986, IEEE Trans. Inf. Theory.

[2]  Sergio Verdú,et al.  The capacity region of the symbol-asynchronous Gaussian multiple-access channel , 1989, IEEE Trans. Inf. Theory.

[3]  Aaron D. Wyner,et al.  Capacity and error-exponent for the direct detection photon channel-Part II , 1988, IEEE Trans. Inf. Theory.

[4]  M. Kreĭn,et al.  The Markov Moment Problem and Extremal Problems , 1977 .

[5]  Ying Li,et al.  Optical CDMA via temporal codes , 1992, IEEE Trans. Commun..

[6]  Robert M. Gagliardi,et al.  Channel coding for asynchronous fiberoptic CDMA communications , 1995, IEEE Trans. Commun..

[7]  Robert G. Gallager,et al.  A perspective on multiaccess channels , 1984, IEEE Trans. Inf. Theory.

[8]  H. Vincent Poor,et al.  Performance of multiuser detection for optical CDMA. I. Error probabilities , 1995, IEEE Trans. Commun..

[9]  Wing C. Kwong,et al.  2n Prime-sequence Codes and Coding Architecture for Optical Code-division Multiple-access , 1996, IEEE Trans. Commun..

[10]  Jingshown Wu,et al.  Synchronous fiber-optic CDMA using hard-limiter and BCH codes , 1995 .

[11]  Michael R. Frey Information capacity of the Poisson channel , 1991, IEEE Trans. Inf. Theory.

[12]  Costas N. Georghiades Modulation and coding for throughput-efficient optical systems , 1994, IEEE Trans. Inf. Theory.

[13]  Y. Kabanov The Capacity of a Channel of the Poisson Type , 1978 .

[14]  Amos Lapidoth,et al.  On the reliability function of the ideal Poisson channel with noiseless feedback , 1993, IEEE Trans. Inf. Theory.

[15]  Raphael Rom,et al.  Limitations of the capacity of the M-user binary adder channel due to physical considerations , 1994, IEEE Trans. Inf. Theory.

[16]  Prakash Narayan,et al.  Signal set design for band-limited memoryless multiple-access channels with soft decision demodulation , 1987, IEEE Trans. Inf. Theory.

[17]  Pierre Brémaud An averaging principle for filtering a jump process with point process observations , 1988, IEEE Trans. Inf. Theory.

[18]  G. Picchi,et al.  Forward error-correction codes in incoherent optical fibre CDMA networks , 1993 .

[19]  Leonid G. Kazovsky,et al.  Optical Fiber Communication Systems , 1996 .

[20]  Maïté Brandt-Pearce,et al.  Performance analysis of single-user and multiuser detectors for optical code division multiple access communication systems , 1995, IEEE Trans. Commun..

[21]  Pierre A. Humblet,et al.  The capacity region of the totally asynchronous multiple-access channel , 1985, IEEE Trans. Inf. Theory.

[22]  J. L. Massey,et al.  Capacity, Cutoff Rate, and Coding for a Direct-Detection Optical Channel , 1981, IEEE Trans. Commun..

[23]  Jawad A. Salehi,et al.  Code division multiple-access techniques in optical fiber networks. I. Fundamental principles , 1989, IEEE Trans. Commun..

[24]  Paul E. Green,et al.  Optical Networking Update (Invited Paper) , 1996, IEEE J. Sel. Areas Commun..

[25]  G.-C. Yang Some new families of optical orthogonal codes for code-division multiple-access fibre-optic networks , 1995 .

[26]  Hans-Martin Wallmeier,et al.  A note on the capacity region of the multiple-access channel (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[27]  Gerard J. Foschini,et al.  Using spread-spectrum in a high-capacity fiber-optic local network , 1988 .

[28]  Aaron D. Wyner,et al.  Capacity and error exponent for the direct detection photon channel-Part I , 1988, IEEE Trans. Inf. Theory.

[29]  Samuel Karlin,et al.  Generalized convex inequalities , 1963 .

[30]  Rudiger Urbanke,et al.  Single user coding for the discrete memoryless multiple access channel , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[31]  J. R. Clark Optical communications , 1977, Proceedings of the IEEE.

[32]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[33]  A. A. Hassan,et al.  Bit-error-rate of an optical two-users communications technique , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[34]  S. Shamai,et al.  Capacity of a pulse amplitude modulated direct detection photon channel , 1990 .

[35]  Mark Leeson,et al.  Principles of Lightwave Communications , 1996 .

[36]  M. S. Harris,et al.  Optical fiber communication systems , 1997 .

[37]  H. Vincent Poor,et al.  Performance of multiuser detection for optical CDMA .II. Asymptotic analysis , 1995, IEEE Trans. Commun..

[38]  Jawad A. Salehi,et al.  Code division multiple-access techniques in optical fiber networks. II. Systems performance analysis , 1989, IEEE Trans. Commun..

[39]  Samuel Karlin,et al.  Some applications to inequalities of the method of generalized convexity , 1976 .

[40]  Sergio Verdú,et al.  On channel capacity per unit cost , 1990, IEEE Trans. Inf. Theory.

[41]  Guu-chang Yang,et al.  Optical orthogonal codes with unequal auto- and cross-correlation constraints , 1995, IEEE Trans. Inf. Theory.

[42]  Shlomo Shamai On the capacity of a direct-detection photon channel with intertransition-constrained binary input , 1991, IEEE Trans. Inf. Theory.

[43]  Shlomo Shamai,et al.  Bounds on the capacity of a spectrally constrained Poisson channel , 1993, IEEE Trans. Inf. Theory.

[44]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[45]  Mark H. A. Davis,et al.  Capacity and cutoff rate for Poisson-type channels , 1980, IEEE Trans. Inf. Theory.

[46]  R. Gallager ENERGY LIMITED CHANNELS : CODING , MULTIACCESS , AND SPREAD SPECTRUM * * ABSTRACT , 1987 .

[47]  Sergio Verdú,et al.  A semiclassical analysis of optical code division multiple access , 1991, IEEE Trans. Commun..

[48]  Maïté Brandt-Pearce,et al.  Multiuser detection for optical code division multiple access systems , 1994, IEEE Trans. Commun..