PageRank and Interaction Information Retrieval

The PageRank method is used by the Google Web search engine to compute the importance of Web pages. Two different views have been developed for the interpretation of the PageRank method and values: (a) stochastic (random surfer): the PageRank values can be conceived as the steady-state distribution of a Markov chain, and (b) algebraic: the PageRank values form the eigenvector corresponding to eigenvalue 1 of the Web link matrix. The Interaction Information Retrieval (I 2 R) method is a nonclassical information retrieval paradigm, which represents a connectionist approach based on dynamic systems. In the present paper, a different interpretation of PageRank is proposed, namely, a dynamic systems viewpoint, by showing that the PageRank method can be formally interpreted as a particular case of the Interaction Information Retrieval method; and thus, the PageRank values may be interpreted as neutral equilibrium points of the Web.

[1]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[2]  Philippe De Wilde Neural Networks Models , 1996 .

[3]  Jasmine Novak,et al.  PageRank Computation and the Structure of the Web: Experiments and Algorithms , 2002 .

[4]  L. A. BREYER,et al.  MARKOVIAN PAGE RANKING DISTRIBUTIONS: SOME THEORY AND SIMULATIONS , 2002 .

[5]  Marc Najork,et al.  Measuring Index Quality Using Random Walks on the Web , 1999, Comput. Networks.

[6]  W. James Psychology: Briefer Course , 2020 .

[7]  Philippe De Wilde Neural Network Models , 1996 .

[8]  GrossbergS. Adaptive pattern classification and universal recoding , 1976 .

[9]  J. Hopfield Neurons withgraded response havecollective computational properties likethoseoftwo-state neurons , 1984 .

[10]  Jerome A. Feldman,et al.  Connectionist Models and Their Properties , 1982, Cogn. Sci..

[11]  Jerome A. Feldman,et al.  Connectionist Models and Their Properties , 1982, Cogn. Sci..

[12]  E. Garfield Citation indexes for science. A new dimension in documentation through association of ideas. 1955. , 1955, International journal of epidemiology.

[13]  C. M. Place,et al.  An Introduction to Dynamical Systems , 1990 .

[14]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[15]  E. Garfield Citation analysis as a tool in journal evaluation. , 1972, Science.

[16]  E. Garfield,et al.  Citation indexes for science. , 1956, Science.

[17]  Prabhakar Raghavan,et al.  Mining the Link Structure of the World Wide Web , 1998 .

[18]  Alfons Kemper,et al.  Bulletin of the Ieee Computer Society Technical Committee on Data Engineering , 1999 .

[19]  Taher H. Haveliwala Efficient Computation of PageRank , 1999 .

[20]  Sándor Dominich Interaction Information Retrieval , 1994, J. Documentation.

[21]  Sndor Dominich Mathematical Foundations of Information Retrieval , 2002, Computational Linguistics.

[22]  S. Grossberg,et al.  Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors , 1976, Biological Cybernetics.

[23]  D. Kossmann,et al.  What can you do with a Web in your Pocket ? , 2007 .

[24]  Jon M. Kleinberg,et al.  Mining the Web's Link Structure , 1999, Computer.

[25]  Jack Belzer,et al.  Encyclopedia of Computer Science and Technology , 2002 .

[26]  Taher H. Haveliwala Topic-sensitive PageRank , 2002, IEEE Trans. Knowl. Data Eng..

[27]  Hector Garcia-Molina,et al.  Efficient Crawling Through URL Ordering , 1998, Comput. Networks.

[28]  Rick Kazman,et al.  Searching and visualizing the web through connectivity , 1997, The Web Conference.

[29]  Sang Ho Lee,et al.  An Improved Computation of the PageRank Algorithm , 2002, ECIR.