All‐Optical Phosphorene Phase Modulator with Enhanced Stability Under Ambient Conditions

[1]  Madan Dubey,et al.  Two-dimensional material nanophotonics , 2014, 1410.3882.

[2]  Richard Martel,et al.  Photooxidation and quantum confinement effects in exfoliated black phosphorus. , 2015, Nature materials.

[3]  H. Chan,et al.  X-Ray photoelectron spectroscopic characterization of [{Pt(PPh3)2(µ3-S)}2PtCl2], [{Pt2(PPh3)4(µ3-S)2Cu}2(µ-dppf)][PF6]2[dppf = Fe (C5H4PPh2)2] and other heterometallic aggregates derived from [{Pt(PPh3)2(µ-S)}2] , 1994 .

[4]  S. Wen,et al.  Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm. , 2015, Optics express.

[5]  X. Bao,et al.  C- and L-band tunable fiber ring laser using a two-taper Mach-Zehnder interferometer filter. , 2010, Optics letters.

[6]  S. Wen,et al.  Molybdenum disulfide (MoS₂) as a broadband saturable absorber for ultra-fast photonics. , 2014, Optics express.

[7]  Choon-Gi Choi,et al.  Thermo-optic mode extinction modulator based on graphene plasmonic waveguide. , 2013, Optics express.

[8]  D. Basko,et al.  Graphene mode-locked ultrafast laser. , 2009, ACS nano.

[9]  Zhenhua Ni,et al.  Atomic‐Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers , 2009, 0910.5820.

[10]  Ken Liu,et al.  CMOS-Compatible WS2-Based All-Optical Modulator , 2017 .

[11]  A.M. Weiner,et al.  Ultrafast optical thresholding based on two-photon absorption GaAs waveguide photodetectors , 1997, IEEE Photonics Technology Letters.

[12]  S. Rundqvist,et al.  Refinement of the crystal structure of black phosphorus , 1965 .

[13]  R. Soklaski,et al.  Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus , 2014 .

[14]  Michal Lipson,et al.  Graphene electro-optic modulator with 30 GHz bandwidth , 2015, Nature Photonics.

[15]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[16]  Sailing He,et al.  Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices , 2014 .

[17]  David J. Moss,et al.  Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides , 2005 .

[18]  Limin Tong,et al.  2D Materials for Optical Modulation: Challenges and Opportunities , 2017, Advanced materials.

[19]  Shinji Yamashita,et al.  Deposition of carbon nanotubes around microfiber via evanascent light. , 2009, Optics express.

[20]  P. Avouris,et al.  Graphene Photonics, Plasmonics, and Optoelectronics , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[21]  Jun Zhang,et al.  All light-control-light properties of molybdenum diselenide (MoSe 2 )-coated-microfiber , 2017 .

[22]  Jaroslaw Sotor,et al.  Black phosphorus saturable absorber for ultrashort pulse generation , 2015 .

[23]  F. Xia,et al.  Ultrafast graphene photodetector , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[24]  Dirk Englund,et al.  High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity. , 2014, Nano letters.

[25]  Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. , 2014, Nature communications.

[26]  L. Tong,et al.  Graphene-deposited microfiber for ultrafast optical modulation , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[27]  K. Loh,et al.  Graphene photonics, plasmonics, and broadband optoelectronic devices. , 2012, ACS nano.

[28]  E. Ciaramella,et al.  All-optical signal reshaping by means of four-wave mixing in optical fibers , 2001, IEEE Photonics Technology Letters.

[29]  Xiang Zhang,et al.  A graphene-based broadband optical modulator , 2011, Nature.

[30]  L. Tong,et al.  All-optical graphene modulator based on optical Kerr phase shift , 2016 .

[31]  Helena Marzo-Ortega,et al.  Corrigendum: Dense genotyping of immune-related susceptibility loci reveals new insights into the genetics of psoriatic arthritis , 2015, Nature Communications.

[32]  Dianyuan Fan,et al.  Black Phosphorus Based All-Optical-Signal-Processing: Toward High Performances and Enhanced Stability , 2017 .

[33]  Zhipei Sun Optical modulators with two-dimensional layered materials , 2016, 2016 Progress in Electromagnetic Research Symposium (PIERS).

[34]  George C Schatz,et al.  Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. , 2016, Nature chemistry.

[35]  Mohammad Asadi,et al.  High‐Quality Black Phosphorus Atomic Layers by Liquid‐Phase Exfoliation , 2015, Advanced materials.

[36]  Jun Wang,et al.  All-optical phase shifter and switch near 1550nm using tungsten disulfide (WS2) deposited tapered fiber. , 2017, Optics express.

[37]  G. Steele,et al.  Isolation and characterization of few-layer black phosphorus , 2014, 1403.0499.

[38]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[39]  L. Lauhon,et al.  Effective passivation of exfoliated black phosphorus transistors against ambient degradation. , 2014, Nano letters.

[40]  Zhenhua Ni,et al.  Broadband graphene polarizer , 2011 .

[41]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[42]  Shuangchun Wen,et al.  Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation. , 2015, Optics express.

[43]  M. Prato,et al.  Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. , 2015, Nanoscale.

[44]  Q. Gong,et al.  Ultrafast All‐Optical Switching , 2017 .

[45]  Jianhua Ji,et al.  Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability , 2017 .

[46]  Zongfu Yu,et al.  Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. , 2014, ACS nano.

[47]  Yan-qing Lu,et al.  An all-optical modulator based on a stereo graphene–microfiber structure , 2015, Light: Science & Applications.

[48]  Wei Ji,et al.  High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus , 2014, Nature communications.

[49]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[50]  Peter A. Andrekson,et al.  16 Gbit/s all-optical demultiplexing using four-wave mixing , 1991 .

[51]  P. Lu,et al.  Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity , 2010 .

[52]  Jianlin Zhao,et al.  Graphene-assisted all-fiber phase shifter and switching , 2015 .

[53]  D. Fan,et al.  Few‐Layer Phosphorene‐Decorated Microfiber for All‐Optical Thresholding and Optical Modulation , 2017 .

[54]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[55]  J. Shan,et al.  Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides , 2016, Nature Photonics.

[56]  Wenhui Wang,et al.  All-Optical Switching of Two Continuous Waves in Few Layer Bismuthene Based on Spatial Cross-Phase Modulation , 2017 .

[57]  L. Liao,et al.  Metal‐Ion‐Modified Black Phosphorus with Enhanced Stability and Transistor Performance , 2017, Advanced materials.

[58]  Hao Wang,et al.  Q-switched fiber laser based on transition metal dichalcogenides MoS(2), MoSe(2), WS(2), and WSe(2). , 2015, Optics express.

[59]  Wei Li,et al.  Ultrafast all-optical graphene modulator. , 2014, Nano letters.