Latest Cambrian stage of evolution of Precambrian continental crust in the Aktyuz high-pressure Complex (Chu-Kendyktas terrane; North Tien Shan): new evidence from the SW part of the Central Asian Orogenic Belt

[1]  Hao-Yang Lee,et al.  Precambrian and Early Palaeozoic metamorphic complexes in the SW part of the Central Asian Orogenic Belt: Ages, compositions, regional correlations and tectonic affinities , 2021, Gondwana Research.

[2]  K. Degtyarev,et al.  Early Paleozoic High- and Ultrahigh-Pressure Complexes in the Western Part of the Central Asian Orogenic Belt: Ages, Compositions, and Geodynamic Models of Formation , 2021, Petrology.

[3]  Yue-heng Yang,et al.  Allanite U–Th–Pb geochronology by ion microprobe , 2020 .

[4]  Kuo‐Lung Wang,et al.  Neoproterozoic granitoid magmatism and granulite metamorphism in the Chu-Kendyktas terrane (Southern Kazakhstan, Central Asian Orogenic Belt): Zircon dating, Nd isotopy and tectono-magmatic evolution , 2019, Precambrian Research.

[5]  Kuo‐Lung Wang,et al.  Early Palaeozoic metamorphism of Precambrian crust in the Zheltau terrane (Southern Kazakhstan; Central Asian Orogenic belt): P-T paths, protoliths, zircon dating and tectonic implications , 2019, Lithos.

[6]  P. Vermeesch IsoplotR: A free and open toolbox for geochronology , 2018, Geoscience Frontiers.

[7]  A. I. Kotov,et al.  Precambrian geology of the Kazakh Uplands and Tien Shan: An overview , 2017 .

[8]  D. Alexeiev,et al.  Zircon ages, geochemistry and Nd isotopic systematics for the Palaeoproterozoic 2.3–1.8 Ga Kuilyu Complex, East Kyrgyzstan – The oldest continental basement fragment in the Tianshan orogenic belt , 2017 .

[9]  J. Bowring,et al.  Community‐Derived Standards for LA‐ICP‐MS U‐(Th‐)Pb Geochronology – Uncertainty Propagation, Age Interpretation and Data Reporting , 2016 .

[10]  R. Klemd,et al.  Metamorphic evolution of (ultra)-high-pressure subduction-related transient crust in the South Tianshan Orogen (Central Asian Orogenic Belt): Geodynamic implications , 2015 .

[11]  E. Hegner,et al.  Eclogitization of transient crust of the Aktyuz Complex during Late Palaeozoic plate collisions in the Northern Tianshan of Kyrgyzstan , 2014 .

[12]  E. Hegner,et al.  Subduction and exhumation mechanisms of ultra‐high and high‐pressure oceanic and continental crust at Makbal (Tianshan, Kazakhstan and Kyrgyzstan) , 2014 .

[13]  M. Barth,et al.  Early Palaeozoic deep subduction of continental crust in the Kyrgyz North Tianshan: evidence from Lu–Hf garnet geochronology and petrology of mafic dikes , 2013, Contributions to Mineralogy and Petrology.

[14]  K. Kullerud,et al.  SHRIMP zircon chronology of HP-UHP rocks of the Makbal metamorphic complex in the Northern Tien Shan, Kyrgyzstan , 2012 .

[15]  Dunyi Liu,et al.  Zircon and muscovite ages, geochemistry, and Nd–Hf isotopes for the Aktyuz metamorphic terrane: Evidence for an Early Ordovician collisional belt in the northern Tianshan of Kyrgyzstan , 2012 .

[16]  G. Gehrels Detrital Zircon U‐Pb Geochronology: Current Methods and New Opportunities , 2012 .

[17]  A. A. Tretyakov,et al.  Geochemical data and zircon ages for rocks in a high-pressure belt of Chu-Yili Mountains, southern Kazakhstan: Implications for the earliest stages of accretion in Kazakhstan and the Tianshan , 2011 .

[18]  M. Tagiri,et al.  Metamorphic history of eclogites and country rock gneisses in the Aktyuz area, Northern Tien‐Shan, Kyrgyzstan: a record from initiation of subduction through to oceanic closure by continent–continent collision , 2010 .

[19]  Donna L. Whitney,et al.  Abbreviations for names of rock-forming minerals , 2010 .

[20]  M. Tagiri,et al.  CHIME monazite ages of garnet-chloritoid-talc schists in the Makbal Complex, Northern Kyrgyz Tien-Shan: First report of the age of the UHP metamorphism , 2009 .

[21]  M. Whitehouse,et al.  Plesovice zircon : A new natural reference material for U-Pb and Hf isotopic microanalysis , 2008 .

[22]  R. Orozbaev,et al.  Polymetamorphism of Aktyuz eclogites (northern Kyrgyz Tien-Shan) deduced from inclusions in garnets , 2007 .

[23]  W. Griffin,et al.  Trace element and isotopic composition of GJ-red zircon standard by laser ablation , 2006 .

[24]  William L. Griffin,et al.  The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology , 2004 .

[25]  I. Franchi,et al.  Further Characterisation of the 91500 Zircon Crystal , 2004 .

[26]  A. Larionov,et al.  The Vendian alkaline igneous suite of northern Timan: ion microprobe U-Pb zircon ages of gabbros and syenite , 2004, Geological Society, London, Memoirs.

[27]  R. Korsch,et al.  TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology , 2003 .

[28]  A. Proyer The preservation of high-pressure rocks during exhumation: metagranites and metapelites , 2003 .

[29]  P. O'Brien,et al.  High‐pressure granulites: formation, recovery of peak conditions and implications for tectonics , 2003 .

[30]  T. Andersen Correction of common lead in U-Pb analyses that do not report 204Pb , 2002 .

[31]  G. Dunning,et al.  Partial Melting of High-P-T Metapelites from the Tshenukutish Terrane (Grenville Province): Petrography and U-Pb Geochronology , 2001 .

[32]  J. E. Viruete,et al.  P–T Paths Derived from Garnet Growth Zoning in an Extensional Setting: an Example from the Tormes Gneiss Dome (Iberian Massif, Spain) , 2000 .

[33]  P. O'Brien,et al.  Eclogites with a short-lived granulite facies overprint in the Moldanubian Zone, Czech Republic: petrology, geochemistry and diffusion modelling of garnet zoning , 1995 .

[34]  W. Griffin,et al.  THREE NATURAL ZIRCON STANDARDS FOR U‐TH‐PB, LU‐HF, TRACE ELEMENT AND REE ANALYSES , 1995 .

[35]  R. Steiger,et al.  Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology , 1977 .

[36]  J. Kramers,et al.  Approximation of terrestrial lead isotope evolution by a two-stage model , 1975 .