Asymptotics of greedy energy points

For a symmetric kernel k: X x X → ℝ U {+∞} on a locally compact metric space X, we investigate the asymptotic behavior of greedy k-energy points {a i } ∞ 1 for a compact subset A C X that are defined inductively by selecting a 1 ∈ A arbitrarily and a n+1 so that Σ n i=1 k(a n+l1 ,a i ) = inf x∈A Σ n i =1 k(x,a i ). We give sufficient conditions under which these points (also known as Leja points) are asymptotically energy minimizing (i.e. have energy Σ N i≠j k(a i , aj) as N → ∞ that is asymptotically the same as e(A, N) := min{Σ i≠j k(x i , x j ): x 1 ,...,x N ∈ A}), and have asymptotic distribution equal to the equilibrium measure for A. For the case of Riesz kernels k s (x, y) := |x ― y| ―s , s > 0, we show that if A is a rectifiable Jordan arc or closed curve in RP and s > 1, then greedy k s -energy points are not asymptotically energy minimizing, in contrast to the case s 1.) Additional results are obtained for greedy k s -energy points on a sphere, for greedy best-packing points (the case s = ∞), and for weighted Riesz kernels. For greedy best-packing points we provide a simple counterexample to a conjecture attributed to L. Bos.

[1]  Johann S. Brauchart,et al.  Optimal logarithmic energy points on the unit sphere , 2008, Math. Comput..

[2]  David R. Nelson,et al.  Interacting topological defects on frozen topographies , 1999, cond-mat/9911379.

[3]  E. Saff,et al.  Riesz Spherical Potentials with External Fields and Minimal Energy Points Separation , 2007 .

[4]  T. Erber,et al.  Complex systems: Equilibrium configurations of N equal charges on a sphere (2 <= N <= 112) , 1995 .

[5]  E. Saff,et al.  Minimal Riesz Energy Point Configurations for Rectifiable d-Dimensional Manifolds , 2003, math-ph/0311024.

[6]  Stefano De Marchi,et al.  On Leja sequences: some results and applications , 2004, Appl. Math. Comput..

[7]  N. S. Landkof Foundations of Modern Potential Theory , 1972 .

[8]  Pertti Mattila,et al.  Geometry of sets and measures in Euclidean spaces , 1995 .

[9]  E. Saff,et al.  Asymptotics for discrete weighted minimal Riesz energy problems on rectifiable sets , 2006, math-ph/0602025.

[10]  D A Weitz,et al.  Grain Boundary Scars and Spherical Crystallography , 2003, Science.

[11]  Franciszek Leja Une méthode élémentaire de résolution du problème de Dirichlet dans le plan , 1950 .

[12]  E. Saff,et al.  Asymptotics of best-packing on rectifiable sets , 2006, math-ph/0605021.

[13]  The modulus of polynomials with zeros on the unit circle: A problem of Erdös , 1991 .

[14]  G. Choquet Theory of capacities , 1954 .

[15]  Bent Fuglede,et al.  On the theory of potentials in locally compact spaces , 1960 .

[16]  E. Saff,et al.  Asymptotics for minimal discrete energy on the sphere , 1995 .

[17]  E. Saff,et al.  Distributing many points on a sphere , 1997 .

[18]  V. Maymeskul,et al.  Asymptotics for Minimal Discrete Riesz Energy on Curves in ℝ d , 2004, Canadian Journal of Mathematics.

[19]  Mario Götz,et al.  On the Distribution of Leja-Górski Points , 2001 .

[20]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .

[21]  E. Saff,et al.  The Riesz energy of the Nth roots of unity: an asymptotic expansion for large N , 2008, 0808.1291.

[22]  N. Zorii,et al.  Equilibrium Potentials with External Fields , 2003 .

[23]  G. Choquet Diamètre transfini et comparaison de diverses capacités , 1959 .

[24]  Matt Davis,et al.  Transfinite Diameter , 2004 .

[25]  B. Farkas,et al.  Transfinite Diameter, Chebyshev Constant and Energy on Locally Compact Spaces , 2007, 0704.0859.

[26]  M. Ohtsuka On potentials in locally compact spaces. , 1961 .

[27]  F. Leja Sur certaines suites liées aux ensembles plans et leur application à la représentation conforme , 1957 .

[28]  Albert Edrei,et al.  Sur les déterminants récurrents et les singularités d'une fonction donnée par son développement de Taylor , 1939 .

[29]  N. Zorii Equilibrium Problems for Potentials with External Fields , 2003 .

[30]  D. Coroian,et al.  Constrained Leja points and the numerical solution of the constrained energy problem , 2001 .