Almost Convex Functions: Conjugacy and Duality
暂无分享,去创建一个
Sorin-Mihai Grad | Gert Wanka | Radu Ioan Boţ | R. Boţ | S. Grad | G. Wanka | R. Boț
[1] Sorin-Mihai Grad,et al. Fenchel’s Duality Theorem for Nearly Convex Functions , 2007 .
[2] Gert Wanka,et al. A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces , 2006 .
[3] G. Wanka,et al. Strong Duality for Generalized Convex Optimization Problems , 2005 .
[4] J. B. G. Frenk,et al. Lagrangian Duality and Cone Convexlike Functions , 2005 .
[5] P. H. Sach. New Generalized Convexity Notion for Set-Valued Maps and Application to Vector Optimization , 2005 .
[6] Siegfried Schaible,et al. Handbook of Generalized Convexity and Generalized Monotonicity , 2005 .
[7] J. B. G. Frenk,et al. Introduction to Convex and Quasiconvex Analysis , 2001 .
[8] J. B. G. Frenk,et al. Minimax Results and Finite-Dimensional Separation , 2002 .
[9] G. Kassay,et al. A Systematization of Convexity Concepts for Sets and Functions , 1997 .
[10] József Kolumbán,et al. Optimization on closely convex sets , 1994 .
[11] S. Paeck. Convexlike and concavelike conditions in alternative, minimax, and minimization theorems , 1992 .
[12] Vaithilingam Jeyakumar,et al. Inequality systems and optimization , 1991 .
[13] S. Cobzas,et al. Duality relations and characterizations of best approximation for p-convex sets , 1987 .
[14] A. Aleman. On some generalizations of convex sets and convex functions , 1985 .
[15] Lamberto Cesari,et al. Optimization-Theory And Applications , 1983 .
[16] R. Tyrrell Rockafellar,et al. Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.
[17] G. Hamel. Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung:f(x+y)=f(x)+f(y) , 1905 .