Almost Convex Functions: Conjugacy and Duality

[1]  Sorin-Mihai Grad,et al.  Fenchel’s Duality Theorem for Nearly Convex Functions , 2007 .

[2]  Gert Wanka,et al.  A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces , 2006 .

[3]  G. Wanka,et al.  Strong Duality for Generalized Convex Optimization Problems , 2005 .

[4]  J. B. G. Frenk,et al.  Lagrangian Duality and Cone Convexlike Functions , 2005 .

[5]  P. H. Sach New Generalized Convexity Notion for Set-Valued Maps and Application to Vector Optimization , 2005 .

[6]  Siegfried Schaible,et al.  Handbook of Generalized Convexity and Generalized Monotonicity , 2005 .

[7]  J. B. G. Frenk,et al.  Introduction to Convex and Quasiconvex Analysis , 2001 .

[8]  J. B. G. Frenk,et al.  Minimax Results and Finite-Dimensional Separation , 2002 .

[9]  G. Kassay,et al.  A Systematization of Convexity Concepts for Sets and Functions , 1997 .

[10]  József Kolumbán,et al.  Optimization on closely convex sets , 1994 .

[11]  S. Paeck Convexlike and concavelike conditions in alternative, minimax, and minimization theorems , 1992 .

[12]  Vaithilingam Jeyakumar,et al.  Inequality systems and optimization , 1991 .

[13]  S. Cobzas,et al.  Duality relations and characterizations of best approximation for p-convex sets , 1987 .

[14]  A. Aleman On some generalizations of convex sets and convex functions , 1985 .

[15]  Lamberto Cesari,et al.  Optimization-Theory And Applications , 1983 .

[16]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[17]  G. Hamel Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung:f(x+y)=f(x)+f(y) , 1905 .