Fluorescence lifetime sensing has been shown to noninvasively characterize the preimplantation health and viability of engineered tissue constructs. However, current practices to monitor postimplantation construct integration are either qualitative (visual assessment) or destructive (tissue histology). We employed label-free fluorescence lifetime spectroscopy for quantitative, noninvasive optical assessment of engineered tissue constructs that were implanted into a murine model. The portable system was designed to be suitable for intravital measurements and included a handheld probe to precisely and rapidly acquire data at multiple sites per construct. Our model tissue constructs were manufactured from primary human cells to simulate patient variability based on a standard protocol, and half of the manufactured constructs were stressed to create a range of health states. Secreted amounts of three cytokines that relate to cellular viability were measured in vitro to assess preimplantation construct health: interleukin-8 (IL-8), human β-defensin 1 (hBD-1), and vascular endothelial growth factor (VEGF). Preimplantation cytokine secretion ranged from 1.5 to 33.5 pg/mL for IL-8, from 3.4 to 195.0 pg/mL for hBD-1, and from 0.1 to 154.3 pg/mL for VEGF. In vivo optical sensing assessed constructs at 1 and 3 weeks postimplantation. We found that at 1 week postimplantation, in vivo optical parameters correlated with in vitro preimplantation secretion levels of all three cytokines (p < 0.05). This correlation was not observed in optical measurements at 3 weeks postimplantation when histology showed that the constructs had re-epithelialized, independent of preimplantation health state, supporting the lack of a correlation. These results suggest that clinical optical diagnostic tools based on label-free fluorescence lifetime sensing of endogenous tissue fluorophores could noninvasively monitor postimplantation integration of engineered tissues.