A New d-DNNF-Based Bound Computation Algorithm for Functional E-MAJSAT

We present a new algorithm for computing upper bounds for an optimization version of the EMAJSAT problem called functional E-MAJSAT. The algorithm utilizes the compilation language d-DNNF which underlies several state-of-the-art algorithms for solving related problems. This bound computation can be used in a branch-and-bound solver for solving functional E-MAJSAT. We then present a technique for pruning values from the branch-and-bound search tree based on the information available after each bound computation. We evaluated the proposed techniques in a MAP solver and a probabilistic conformant planner. In both cases, our experiments showed that the new techniques improved the efficiency of state-of-the-art solvers by orders of magnitude.

[1]  Jinbo Huang,et al.  Combining Knowledge Compilation and Search for Conformant Probabilistic Planning , 2006, ICAPS.

[2]  Adnan Darwiche,et al.  Solving MAP Exactly by Searching on Compiled Arithmetic Circuits , 2006, AAAI.

[3]  Craig Boutilier,et al.  Imitation and Reinforcement Learning in Agents with Heterogeneous Actions , 2001, Canadian Conference on AI.

[4]  Andrew Y. Ng,et al.  Pharmacokinetics of a novel formulation of ivermectin after administration to goats , 2000, ICML.

[5]  Drew V. Mcdermott,et al.  Projecting plans for uncertain worlds , 1990 .

[6]  Craig Boutilier,et al.  Implicit Imitation in Multiagent Reinforcement Learning , 1999, ICML.

[7]  James D. Park,et al.  MAP Complexity Results and Approximation Methods , 2002, UAI.

[8]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[9]  Pierre Marquis,et al.  A Knowledge Compilation Map , 2002, J. Artif. Intell. Res..

[10]  David Andre,et al.  Model based Bayesian Exploration , 1999, UAI.

[11]  Rina Dechter,et al.  Bucket elimination: A unifying framework for probabilistic inference , 1996, UAI.

[12]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[13]  Leslie Pack Kaelbling,et al.  Learning in embedded systems , 1993 .

[14]  Michael L. Littman,et al.  MAXPLAN: A New Approach to Probabilistic Planning , 1998, AIPS.

[15]  Michael L. Littman,et al.  Markov Games as a Framework for Multi-Agent Reinforcement Learning , 1994, ICML.

[16]  C. Atkeson,et al.  Prioritized Sweeping : Reinforcement Learning withLess Data and Less Real , 1993 .

[17]  Masayuki Inaba,et al.  Learning by watching: extracting reusable task knowledge from visual observation of human performance , 1994, IEEE Trans. Robotics Autom..

[18]  Nathanael Hyafil,et al.  Conformant Probabilistic Planning via CSPs , 2003, ICAPS.

[19]  Maja J. Matarić,et al.  Visuo-Motor Primitives as a Basis for Learning by Imitation , 2000 .

[20]  Nicholas Kushmerick,et al.  An Algorithm for Probabilistic Planning , 1995, Artif. Intell..

[21]  John L. Bresina,et al.  Anytime Synthetic Projection: Maximizing the Probability of Goal Satisfaction , 1990, AAAI.

[22]  Michael L. Littman,et al.  Initial Experiments in Stochastic Satisfiability , 1999, AAAI/IAAI.

[23]  A. Darwiche,et al.  Complexity Results and Approximation Strategies for MAP Explanations , 2011, J. Artif. Intell. Res..

[24]  Michael P. Wellman,et al.  Multiagent Reinforcement Learning: Theoretical Framework and an Algorithm , 1998, ICML.

[25]  Kerstin Dautenhahn,et al.  Mapping between dissim ilar bodies: Affordances and the algebraic foundations of imitation , 1998 .

[26]  S. Pattinson,et al.  Learning to fly. , 1998 .

[27]  Toniann Pitassi,et al.  Stochastic Boolean Satisfiability , 2001, Journal of Automated Reasoning.

[28]  Stefan Schaal,et al.  Robot Learning From Demonstration , 1997, ICML.

[29]  Adnan Darwiche,et al.  Any-Space Probabilistic Inference , 2000, UAI.

[30]  Adnan Darwiche,et al.  Solving MAP Exactly using Systematic Search , 2002, UAI.

[31]  Michael Kearns,et al.  Finite-Sample Convergence Rates for Q-Learning and Indirect Algorithms , 1998, NIPS.

[32]  Michael L. Littman,et al.  The Computational Complexity of Probabilistic Planning , 1998, J. Artif. Intell. Res..