A Practical Randomized CP Tensor Decomposition

The CANDECOMP/PARAFAC (CP) decomposition is a leading method for the analysis of multiway data. The standard alternating least squares algorithm for the CP decomposition (CP-ALS) involves a series ...

[1]  Andrzej Cichocki,et al.  Decomposition of Big Tensors With Low Multilinear Rank , 2014, ArXiv.

[2]  Tamara G. Kolda,et al.  Efficient MATLAB Computations with Sparse and Factored Tensors , 2007, SIAM J. Sci. Comput..

[3]  Jimeng Sun,et al.  An input-adaptive and in-place approach to dense tensor-times-matrix multiply , 2015, SC15: International Conference for High Performance Computing, Networking, Storage and Analysis.

[4]  Pierre Comon,et al.  Enhanced Line Search: A Novel Method to Accelerate PARAFAC , 2008, SIAM J. Matrix Anal. Appl..

[5]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[6]  Nikos D. Sidiropoulos,et al.  SPLATT: Efficient and Parallel Sparse Tensor-Matrix Multiplication , 2015, 2015 IEEE International Parallel and Distributed Processing Symposium.

[7]  Rasmus Bro,et al.  A comparison of algorithms for fitting the PARAFAC model , 2006, Comput. Stat. Data Anal..

[8]  Rasmus Bro,et al.  Multiway analysis of epilepsy tensors , 2007, ISMB/ECCB.

[9]  David P. Woodruff Sketching as a Tool for Numerical Linear Algebra , 2014, Found. Trends Theor. Comput. Sci..

[10]  Yan Liu,et al.  SPALS: Fast Alternating Least Squares via Implicit Leverage Scores Sampling , 2016, NIPS.

[11]  J. H. Choi,et al.  DFacTo: Distributed Factorization of Tensors , 2014, NIPS.

[12]  Nikos D. Sidiropoulos,et al.  ParCube: Sparse Parallelizable Tensor Decompositions , 2012, ECML/PKDD.

[13]  Mathilde Chevreuil,et al.  A Least-Squares Method for Sparse Low Rank Approximation of Multivariate Functions , 2015, SIAM/ASA J. Uncertain. Quantification.

[14]  Christos Faloutsos,et al.  FlexiFaCT: Scalable Flexible Factorization of Coupled Tensors on Hadoop , 2014, SDM.

[15]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[16]  Sameer A. Nene,et al.  Columbia Object Image Library (COIL100) , 1996 .

[17]  Sivan Toledo,et al.  Blendenpik: Supercharging LAPACK's Least-Squares Solver , 2010, SIAM J. Sci. Comput..

[18]  Andrzej Cichocki,et al.  Fast Alternating LS Algorithms for High Order CANDECOMP/PARAFAC Tensor Factorizations , 2013, IEEE Transactions on Signal Processing.

[19]  David P. Woodruff,et al.  Sublinear Time Orthogonal Tensor Decomposition , 2016, NIPS.

[20]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[21]  F. L. Hitchcock The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .

[22]  Alexander J. Smola,et al.  Fast and Guaranteed Tensor Decomposition via Sketching , 2015, NIPS.

[23]  Jon Kleinberg,et al.  Proceedings of the thirty-eighth annual ACM symposium on Theory of computing , 2006, STOC 2006.

[24]  Sertac Karaman,et al.  A continuous analogue of the tensor-train decomposition , 2015, Computer Methods in Applied Mechanics and Engineering.

[25]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[26]  S. Muthukrishnan,et al.  Faster least squares approximation , 2007, Numerische Mathematik.

[27]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[28]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[29]  Tamara G. Kolda,et al.  Categories and Subject Descriptors: G.4 [Mathematics of Computing]: Mathematical Software— , 2022 .

[30]  Christos Faloutsos,et al.  MultiAspectForensics: Pattern Mining on Large-Scale Heterogeneous Networks with Tensor Analysis , 2011, 2011 International Conference on Advances in Social Networks Analysis and Mining.

[31]  Bernard Chazelle,et al.  Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform , 2006, STOC '06.

[32]  Nikolai F. Rulkov,et al.  On the performance of gas sensor arrays in open sampling systems using Inhibitory Support Vector Machines , 2013 .

[33]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[34]  Xiaofeng Gong,et al.  Tensor decomposition of EEG signals: A brief review , 2015, Journal of Neuroscience Methods.

[35]  Nikos D. Sidiropoulos,et al.  Tensor Decomposition for Signal Processing and Machine Learning , 2016, IEEE Transactions on Signal Processing.

[36]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[37]  R. Jaffé,et al.  Applications of Excitation Emission Matrix Fluorescence with Parallel Factor Analysis (EEM-PARAFAC) in Assessing Environmental Dynamics of Natural Dissolved Organic Matter (DOM) in Aquatic Environments: A Review , 2014 .

[38]  Gregory Beylkin,et al.  Randomized Alternating Least Squares for Canonical Tensor Decompositions: Application to A PDE With Random Data , 2015, SIAM J. Sci. Comput..

[39]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[40]  Kathleen R. Murphy,et al.  Fluorescence spectroscopy and multi-way techniques. PARAFAC , 2013 .

[41]  Nico Vervliet,et al.  A Randomized Block Sampling Approach to Canonical Polyadic Decomposition of Large-Scale Tensors , 2016, IEEE Journal of Selected Topics in Signal Processing.

[42]  Ian Davidson,et al.  Network discovery via constrained tensor analysis of fMRI data , 2013, KDD.

[43]  V. Rokhlin,et al.  A fast randomized algorithm for overdetermined linear least-squares regression , 2008, Proceedings of the National Academy of Sciences.