A survey on error bounds for lower semicontinuous functions

We survey ancient and recent results on global error bounds for the distance to a sublevel set of a lower semicontinuous function defined on a complete metric space. We emphasize the case of a recent characterization of this property which appeared in [CITE]. We also review the convex case and show how the known result on sufficient condition for a global error bound can be derived from the quoted characterization.

[1]  S. M. Robinson Stability Theory for Systems of Inequalities, Part II: Differentiable Nonlinear Systems , 1976 .

[2]  E. De Giorgi,et al.  PROBLEMI DI EVOLUZIONE IN SPAZI METRICI , 1980 .

[3]  Abderrahim Jourani,et al.  Erratum: Hoffman's Error Bound, Local Controllability, and Sensitivity Analysis , 2000, SIAM J. Control. Optim..

[4]  Xi Yin Zheng,et al.  Error Bounds for Lower Semicontinuous Functions in Normed Spaces , 2001, SIAM J. Optim..

[5]  Andreas H. Hamel,et al.  Remarks to an equivalent formulation of ekeland’s variational principle , 1994 .

[6]  D. Azé,et al.  On the Sensitivity Analysis of Hoffman Constants for Systems of Linear Inequalities , 2002, SIAM J. Optim..

[7]  S. Deng Global Error Bounds for Convex Inequality Systems in Banach Spaces , 1998 .

[8]  A. Lewis,et al.  Error Bounds for Convex Inequality Systems , 1998 .

[9]  Jane J. Ye,et al.  Sufficient Conditions for Error Bounds , 2002, SIAM J. Optim..

[10]  S. M. Robinson An Application of Error Bounds for Convex Programming in a Linear Space , 1975 .

[11]  D. Azé,et al.  Variational pairs and applications to stability in nonsmooth analysis , 2002 .

[12]  Olvi L. Mangasarian Error bounds for nondifferentiable convex inequalities under a strong Slater constraint qualification , 1998, Math. Program..

[13]  Martin Gugat Error bounds for infinite systems of convex inequalities without Slater’s condition , 2000, Math. Program..

[14]  A. Hoffman On approximate solutions of systems of linear inequalities , 1952 .

[15]  A. Auslender,et al.  Well Behaved Asymptotical Convex Functions , 1989 .

[16]  Jean-Noël Corvellec,et al.  Characterizations of error bounds for lower semicontinuous functions on metric spaces , 2004 .

[17]  B. Mordukhovich,et al.  Differential characterizations of covering, metric regularity, and Lispchitzian properties of multifunctions between Banach spaces , 1995 .

[18]  G. Jiang On Characterization of Metric Completeness , 2000 .

[19]  Jane J. Ye,et al.  On error bounds for lower semicontinuous functions , 2002, Math. Program..

[20]  VARIATIONAL PRINCIPLE AND FIXED POINTS , 2002 .

[21]  Sien Deng Computable Error Bounds For Convex Inequality Systems In Reflexive Banach Spaces , 1997, SIAM J. Optim..

[22]  Jong-Shi Pang,et al.  Error bounds in mathematical programming , 1997, Math. Program..

[23]  I. Ekeland On the variational principle , 1974 .

[24]  Jane J. Ye,et al.  First-Order and Second-Order Conditions for Error Bounds , 2003, SIAM J. Optim..

[25]  O. Cornejo,et al.  Conditioning and Upper-Lipschitz Inverse Subdifferentials in Nonsmooth Optimization Problems , 1997 .

[26]  A. Ioffe Regular points of Lipschitz functions , 1979 .

[27]  Jean-Pierre Dedieu,et al.  Approximate Solutions of Analytic Inequality Systems , 2000, SIAM J. Optim..

[28]  Jean-Baptiste Hiriart-Urruty,et al.  Optimal Hoffman-Type Estimates in Eigenvalue and Semidefinite Inequality Constraints , 2002, J. Glob. Optim..

[29]  Alfred Auslender,et al.  Global Regularity Theorems , 1988, Math. Oper. Res..

[30]  Wu Li,et al.  Asymptotic constraint qualifications and global error bounds for convex inequalities , 1999, Math. Program..

[31]  ABDERRAHIM JOURANI,et al.  Hoffman's Error Bound, Local Controllability, and Sensitivity Analysis , 2000, SIAM J. Control. Optim..

[32]  Roberto Cominetti,et al.  Convex Functions with Unbounded Level Sets and Applications to Duality Theory , 1993, SIAM J. Optim..

[33]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[34]  Huynh van Ngai,et al.  Error bounds for convex differentiable inequality systems in Banach spaces , 2005, Math. Program..

[35]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[36]  A. Ioffe Metric regularity and subdifferential calculus , 2000 .

[37]  M. Teboulle,et al.  Asymptotic cones and functions in optimization and variational inequalities , 2002 .

[38]  S. Nadler Multi-valued contraction mappings. , 1969 .

[39]  Olvi L. Mangasarian,et al.  A Condition Number for Differentiable Convex Inequalities , 1985, Math. Oper. Res..

[40]  Le van Hot Fixed point theorems for multivalued mappings , 1982 .

[41]  Alexander D. Ioffe,et al.  Towards Metric Theory of Metric Regularity , 2001 .

[42]  M. Ferris,et al.  Weak sharp minima in mathematical programming , 1993 .

[43]  Marcin Studniarski,et al.  Weak Sharp Minima: Characterizations and Sufficient Conditions , 1999, SIAM J. Control. Optim..