Entropy-Stable Schemes for the Euler Equations with Far-Field and Wall Boundary Conditions

In this paper entropy-stable numerical schemes for the Euler equations in one space dimension subject to far-field and wall boundary conditions are derived. Furthermore, a stable numerical treatment of interfaces between different grid domains is proposed. Numerical computations with second- and fourth-order accurate schemes corroborate the stability and accuracy of the proposed boundary treatment.

[1]  Jan Nordström,et al.  Boundary and Interface Conditions for High-Order Finite-Difference Methods Applied to the Euler and Navier-Stokes Equations , 1999 .

[2]  A. Harten On the symmetric form of systems of conservation laws with entropy , 1983 .

[3]  P. Dutt,et al.  Stable boundary conditions and difference schemas for Navier-Stokes equations , 1988 .

[4]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[5]  Magnus Svärd Third-order accurate entropy-stable schemes for initial-boundary-value conservation laws , 2012 .

[6]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[7]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier—Stokes equations and the second law of thermodynamics , 1986 .

[8]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[9]  Eitan Tadmor,et al.  ENTROPY STABLE APPROXIMATIONS OF NAVIER-STOKES EQUATIONS WITH NO ARTIFICIAL NUMERICAL VISCOSITY , 2006 .

[10]  Eitan Tadmor,et al.  Arbitrarily High-order Accurate Entropy Stable Essentially Nonoscillatory Schemes for Systems of Conservation Laws , 2012, SIAM J. Numer. Anal..

[11]  P. Floch,et al.  Boundary conditions for nonlinear hyperbolic systems of conservation laws , 1988 .

[12]  Bernardo Cockburn,et al.  Convergence of the finite volume method for multidimensional conservation laws , 1995 .

[13]  Siddhartha Mishra,et al.  Accurate numerical schemes for approximating initial-boundary value problems for systems of conservation laws , 2011, 1109.1446.

[14]  Magnus Svärd,et al.  A stable high-order finite difference scheme for the compressible Navier-Stokes equations, far-field boundary conditions , 2007, J. Comput. Phys..

[15]  Philip L. Roe,et al.  Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks , 2009, J. Comput. Phys..

[16]  Philippe G. LeFloch,et al.  Boundary Layers in Weak Solutions of Hyperbolic Conservation Laws , 1999 .

[17]  C. W. Nielson,et al.  A comparison of three two-dimensional electrostatic plasma simulation models , 1975 .

[18]  Magnus Svärd,et al.  Entropy stable schemes for initial-boundary-value conservation laws , 2012 .

[19]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[20]  Peter D. Lax,et al.  A Random Choice Finite-difference Scheme for Hyperbolic Conservation Laws , 2015 .

[21]  M. Mock,et al.  Systems of conservation laws of mixed type , 1980 .

[22]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[23]  Travis Calob Fisher,et al.  High-order L2 stable multi-domain finite difference method for compressible flows , 2012 .

[24]  ShakibFarzin,et al.  A new finite element formulation for computational fluid dynamics , 1991 .

[25]  Eitan Tadmor,et al.  Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems , 2003, Acta Numerica.