Secure Group Testing

The principal mission of Group Testing (GT) is to identify a small subset of “defective” items from a large population, by grouping items into as little as possible test pools. The test outcome of a pool is positive if it contains at least one defective item, and is negative otherwise. GT algorithms are utilized in numerous applications, and in most of them the privacy of the tested subjects, namely, whether they are defective or not, is critical. In this paper, we consider a scenario where there is an eavesdropper (Eve) which is able to observe a subset of the GT outcomes (pools). We propose a new non-adaptive Secure Group Testing (SGT) algorithm based on information theoretic principles, which keeps the eavesdropper ignorant regarding the items' status. Specifically, when the fraction of tests observed by Eve is 0 ≤ δ <; 1, we prove that the number of tests required for both correct reconstruction at the legitimate user (with high probability) and negligible mutual information at Eve's side is 1/1-δ times the number of tests required with no secrecy constraint.

[1]  Tetsunao Matsuta,et al.  国際会議開催報告:2013 IEEE International Symposium on Information Theory , 2013 .

[2]  Oliver Johnson,et al.  Strong Converses for Group Testing From Finite Blocklength Results , 2015, IEEE Transactions on Information Theory.

[3]  Lawrence H. Ozarow,et al.  Wire-tap channel II , 1984, AT&T Bell Lab. Tech. J..

[4]  Jun Luo,et al.  Neighbor discovery in wireless ad hoc networks based on group testing , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[5]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[6]  Anna C. Gilbert,et al.  QuickSAND: Quick Summary and Analysis of Network Data , 2001 .

[7]  Imre Csiszár,et al.  Secrecy Capacities for Multiterminal Channel Models , 2005, IEEE Transactions on Information Theory.

[8]  Imre Csiszár,et al.  Secrecy capacities for multiple terminals , 2004, IEEE Transactions on Information Theory.

[9]  A. Sebő ON TWO RANDOM SEARCH PROBLEMS , 1985 .

[10]  Mikhail B. Malyutov,et al.  Search for Sparse Active Inputs: A Review , 2013, Information Theory, Combinatorics, and Search Theory.

[11]  Taieb Znati,et al.  Detecting Application Denial-of-Service Attacks: A Group-Testing-Based Approach , 2010, IEEE Transactions on Parallel and Distributed Systems.

[12]  Anthony Ephremides,et al.  An asynchronous neighbor discovery algorithm for wireless sensor networks , 2007, Ad Hoc Networks.

[13]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[14]  Omer Gurewitz,et al.  Secured Data Gathering Protocol for IoT Networks , 2018, CSCML.

[15]  Ueli Maurer,et al.  Secret key agreement by public discussion from common information , 1993, IEEE Trans. Inf. Theory.

[16]  Matthew Malloy,et al.  Near-Optimal Adaptive Compressed Sensing , 2012, IEEE Transactions on Information Theory.

[17]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[18]  Cem Aksoylar,et al.  Correction to “Boolean Compressed Sensing and Noisy Group Testing” [Mar 12 1880-1901] , 2015, IEEE Transactions on Information Theory.

[19]  Mahdi Cheraghchi,et al.  Improved Constructions for Non-adaptive Threshold Group Testing , 2010, Algorithmica.

[20]  Atri Rudra,et al.  Efficiently decodable non-adaptive group testing , 2010, SODA '10.

[21]  Lie Zhu,et al.  Some New Bounds for Cover-Free Families , 2000, J. Comb. Theory, Ser. A.

[22]  Sudipto Guha,et al.  Fast, small-space algorithms for approximate histogram maintenance , 2002, STOC '02.

[23]  Cem Aksoylar,et al.  Information-theoretic bounds for adaptive sparse recovery , 2014, 2014 IEEE International Symposium on Information Theory.

[24]  Ely Porat,et al.  Search Methodologies , 2022 .

[25]  Oliver Johnson,et al.  Strong converses for group testing in the finite blocklength regime , 2015, ArXiv.

[26]  George Atia,et al.  Strong Impossibility Results for Sparse Signal Processing , 2014, IEEE Signal Processing Letters.

[27]  Cem Aksoylar,et al.  Sparse Signal Processing With Linear and Nonlinear Observations: A Unified Shannon-Theoretic Approach , 2017, IEEE Trans. Inf. Theory.

[28]  Venkatesh Saligrama,et al.  Information Theoretic Bounds for Compressed Sensing , 2008, IEEE Transactions on Information Theory.

[29]  Raymond A. Paul,et al.  Testing Web Services Using Progressive Group Testing , 2004, AWCC.

[30]  Y. Rachlin,et al.  The secrecy of compressed sensing measurements , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[31]  Venkatesh Saligrama,et al.  Non-adaptive group testing: Explicit bounds and novel algorithms , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[32]  Christian Deppe,et al.  Information Theory, Combinatorics, and Search Theory: in memory of Rudolf Ahlswede , 2013 .

[33]  A. Macula Probabilistic nonadaptive group testing in the presence of errors and DNA library screening , 1999 .

[34]  Mayank Bakshi,et al.  GROTESQUE: Noisy Group Testing (Quick and Efficient) , 2013, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[35]  Venkatesh Saligrama,et al.  Non-adaptive probabilistic group testing with noisy measurements: Near-optimal bounds with efficient algorithms , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[36]  H. Schäfer,et al.  Adaptive Group Sequential Designs for Clinical Trials: Combining the Advantages of Adaptive and of Classical Group Sequential Approaches , 2001, Biometrics.

[37]  Mikhail J. Atallah,et al.  Private combinatorial group testing , 2008, ASIACCS '08.

[38]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[39]  Robert D. Nowak,et al.  Joint Source–Channel Communication for Distributed Estimation in Sensor Networks , 2007, IEEE Transactions on Information Theory.

[40]  Olgica Milenkovic,et al.  Semi-quantitative group testing , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[41]  Shuangqing Wei,et al.  Achievable partition information rate over noisy multi-access Boolean channel , 2014, 2014 IEEE International Symposium on Information Theory.

[42]  Robert J. Piechocki,et al.  The capacity of non-identical adaptive group testing , 2014, 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[43]  Douglas R. Stinson,et al.  Cryptography: Theory and Practice , 1995 .

[44]  Marco Lops,et al.  A Simple Algorithm for Neighbor Discovery in Wireless Networks , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[45]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[46]  Steven A. Borbash,et al.  Birthday protocols for low energy deployment and flexible neighbor discovery in ad hoc wireless networks , 2001, MobiHoc '01.

[47]  Marco Lops,et al.  Neighbor Discovery in Wireless Networks: A Multiuser-Detection Approach , 2007 .

[48]  Mahdi Cheraghchi,et al.  Noise-resilient group testing: Limitations and constructions , 2008, Discret. Appl. Math..

[49]  Alexander W. Dent,et al.  Fundamental problems in provable security and cryptography , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[50]  D. Du,et al.  Combinatorial Group Testing and Its Applications , 1993 .

[51]  George Atia,et al.  Boolean Compressed Sensing and Noisy Group Testing , 2009, IEEE Transactions on Information Theory.

[52]  Mahesh K. Varanasi,et al.  Group detection for synchronous Gaussian code-division multiple-access channels , 1995, IEEE Trans. Inf. Theory.

[53]  Graham Cormode,et al.  What's new: finding significant differences in network data streams , 2004, IEEE/ACM Transactions on Networking.

[54]  Hung-Lin Fu,et al.  Nonadaptive algorithms for threshold group testing , 2009, Discret. Appl. Math..

[55]  Mayank Bakshi,et al.  Near-Optimal Stochastic Threshold Group Testing , 2013, ArXiv.

[56]  Sidharth Jaggi,et al.  Non-Adaptive Group Testing: Explicit Bounds and Novel Algorithms , 2014, IEEE Trans. Inf. Theory.

[57]  Mingyan Liu,et al.  Efficient Sensor Fault Detection Using Combinatorial Group Testing , 2013, 2013 IEEE International Conference on Distributed Computing in Sensor Systems.

[58]  Graham Cormode,et al.  What's hot and what's not: tracking most frequent items dynamically , 2003, TODS.

[59]  A. Sterrett On the Detection of Defective Members of Large Populations , 1957 .

[60]  Mahdi Cheraghchi,et al.  Derandomization and group testing , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[61]  Mikhail J. Atallah,et al.  Indexing Information for Data Forensics , 2005, ACNS.

[62]  Dino Sejdinovic,et al.  Note on noisy group testing: Asymptotic bounds and belief propagation reconstruction , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[63]  Matthieu R. Bloch,et al.  Physical-Layer Security: From Information Theory to Security Engineering , 2011 .

[64]  Peter Damaschke,et al.  Bounds for Nonadaptive Group Tests to Estimate the Amount of Defectives , 2010, COCOA.

[65]  Matthew Aldridge,et al.  The Capacity of Bernoulli Nonadaptive Group Testing , 2015, IEEE Transactions on Information Theory.

[66]  Charles J. Colbourn Group testing for consecutive positives , 1999 .

[67]  Tadashi Wadayama,et al.  An analysis on non-adaptive group testing based on sparse pooling graphs , 2013, 2013 IEEE International Symposium on Information Theory.

[68]  Matthew Aldridge,et al.  Group Testing Algorithms: Bounds and Simulations , 2013, IEEE Transactions on Information Theory.

[69]  Annalisa De Bonis,et al.  Optimal Two-Stage Algorithms for Group Testing Problems , 2005, SIAM J. Comput..

[70]  Richard C. Singleton,et al.  Nonrandom binary superimposed codes , 1964, IEEE Trans. Inf. Theory.

[71]  Shuangqing Wei,et al.  Partition Information and its Transmission Over Boolean Multi-Access Channels , 2014, IEEE Transactions on Information Theory.

[72]  R. Dorfman The Detection of Defective Members of Large Populations , 1943 .

[73]  Frank K. Hwang,et al.  A survey on nonadaptive group testing algorithms through the angle of decoding , 2008, J. Comb. Optim..

[74]  Volkan Cevher,et al.  Phase Transitions in Group Testing , 2016, SODA.

[75]  Sidharth Jaggi,et al.  Nearly optimal sparse group testing , 2016, 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[76]  Paul C. Kocher,et al.  Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems , 1996, CRYPTO.

[77]  Matthew Aldridge,et al.  The capacity of adaptive group testing , 2013, 2013 IEEE International Symposium on Information Theory.

[78]  Tanja Lange,et al.  Attacking and defending the McEliece cryptosystem , 2008, IACR Cryptol. ePrint Arch..

[79]  S. Muthukrishnan,et al.  Data streams: algorithms and applications , 2005, SODA '03.

[80]  Benny Pinkas,et al.  Efficient Private Matching and Set Intersection , 2004, EUROCRYPT.

[81]  Sidharth Jaggi,et al.  Non-adaptive group testing with inhibitors , 2014, 2015 IEEE Information Theory Workshop (ITW).

[82]  Ely Porat,et al.  k -Mismatch with Don't Cares , 2007, ESA.

[83]  Peter Damaschke,et al.  Competitive Group Testing and Learning Hidden Vertex Covers with Minimum Adaptivity , 2010, Discret. Math. Algorithms Appl..

[84]  Kannan Ramchandran,et al.  SAFFRON: A fast, efficient, and robust framework for group testing based on sparse-graph codes , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[85]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[86]  Matthew Aldridge Adaptive group testing as channel coding with feedback , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[87]  Volkan Cevher,et al.  Converse bounds for noisy group testing with arbitrary measurement matrices , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[88]  Christian Deppe,et al.  Information Theory, Combinatorics, and Search Theory , 2013, Lecture Notes in Computer Science.

[89]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[90]  Matthew Aldridge,et al.  Almost separable matrices , 2017, J. Comb. Optim..

[91]  Volkan Cevher,et al.  Limits on Support Recovery With Probabilistic Models: An Information-Theoretic Framework , 2015, IEEE Transactions on Information Theory.

[92]  Yinong Chen,et al.  Adaptive Web Services Testing , 2007, 31st Annual International Computer Software and Applications Conference (COMPSAC 2007).

[93]  Zoltán Füredi On r-Cover-free Families , 1996, J. Comb. Theory, Ser. A.

[94]  D. Du,et al.  Pooling Designs And Nonadaptive Group Testing: Important Tools For Dna Sequencing , 2006 .