Autoregressive Bayesian Networks for Information Validation and Amendment in Military Applications

Introduction ......................................................................................................128 Methods ............................................................................................................130 Interpolation .................................................................................................130 Linear Interpolation .................................................................................130 Spline Interpolation .................................................................................131 Autoregressive Models...................................................................................131 Probabilistic Modeling ..................................................................................132 Dynamic Bayesian Networks ....................................................................133 Autoregressive Bayesian Networks (AR-BN) .................................................134 Estimating Missing Data from Incomplete Databases Using AR-BN ............135 Error Metrics for the Estimation of Missing Values .......................................136 Data Characterization ...................................................................................137

[1]  Sunil Vadera,et al.  A Probabilistic Model for Information and Sensor Validation , 2006, Comput. J..

[2]  R. Shibata Selection of the order of an autoregressive model by Akaike's information criterion , 1976 .

[3]  E. V. Thomas,et al.  Outlier detection in multivariate calibration , 1989 .

[4]  P. A. Blight The Analysis of Time Series: An Introduction , 1991 .

[5]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[6]  R. Tsay Outliers, Level Shifts, and Variance Changes in Time Series , 1988 .

[7]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[8]  Marina V. Fomina,et al.  Problem of knowledge discovery in noisy databases , 2011, Int. J. Mach. Learn. Cybern..

[9]  Pablo Hernandez-Leal,et al.  Learning temporal nodes Bayesian networks , 2013, Int. J. Approx. Reason..

[10]  Michael J. Piovoso,et al.  A method of robust multivariate outlier replacement , 2002 .

[11]  M. A. Al-Marhoun,et al.  Prediction of Oil PVT Properties Using Neural Networks , 2001 .

[12]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[13]  Louis Wehenkel,et al.  Data validation and missing data reconstruction using self-organizing map for water treatment , 2011, Neural Computing and Applications.

[14]  Keinosuke Fukunaga,et al.  An Algorithm for Finding Intrinsic Dimensionality of Data , 1971, IEEE Transactions on Computers.

[15]  Peter Lancaster,et al.  Curve and surface fitting - an introduction , 1986 .

[16]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[17]  C. Muirhead Distinguishing Outlier Types in Time Series , 1986 .

[18]  Keiji Kanazawa,et al.  A model for reasoning about persistence and causation , 1989 .

[19]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[20]  Pablo H. Ibargüengoytia,et al.  Viscosity virtual sensor to control combustion in fossil fuel power plants , 2013, Eng. Appl. Artif. Intell..

[21]  H. Akaike Fitting autoregressive models for prediction , 1969 .

[22]  Luis Enrique Sucar,et al.  Probabilistic Graphical Models: Principles and Applications , 2015, Advances in Computer Vision and Pattern Recognition.

[23]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[24]  Tom Burr,et al.  Causation, Prediction, and Search , 2003, Technometrics.

[25]  Naoki Tanaka,et al.  Wavelet analysis for detecting body-movement artifacts in optical topography signals , 2006, NeuroImage.

[26]  Mohammad T. Khasawneh,et al.  New framework that uses patterns and relations to understand terrorist behaviors , 2017, Expert Syst. Appl..

[27]  G. Box,et al.  Bayesian analysis of some outlier problems in time series , 1979 .

[28]  Pablo Hernandez-Leal,et al.  On the Estimation of Missing Data in Incomplete Databases: Autoregressive Bayesian Networks , 2013, ICONS 2013.

[29]  Nathan S. Balke Detecting Level Shifts in Time Series , 1993 .

[30]  Kristian G. Olesen,et al.  HUGIN - A Shell for Building Bayesian Belief Universes for Expert Systems , 1989, IJCAI.

[31]  K. Hadri Testing The Null Hypothesis Of Stationarity Against The Alternative Of A Unit Root In Panel Data With Serially Correlated Errors , 1999 .

[32]  S. Peng,et al.  Partial least squares and random sample consensus in outlier detection. , 2012, Analytica chimica acta.