InAs/InP Quantum-Dash Lasers and Amplifiers

InAs quantum-dash structures fabricated by self-assembly growth techniques and based on compound semiconductors lattice matched to InP substrates were used to realize long wavelength lasers and amplifiers for telecom applications. With this new type of laser material special properties of low-dimensional electronic systems can be utilized for device applications, which allow to realize new device features not possible by conventional device designs. In this paper a brief overview is given about application oriented material and device research on this wire/dot-like material system by highlighting laser and high-speed optical amplifiers. Broadband laser material with a gain bandwidth of more than 300 nm could be obtained to cover the extended telecommunication wavelength range between 1.4 and 1.65 . High-speed optical amplifiers could be realized by using this quantum-dash laser material with unique device performance, like multiwavelength amplification without any cross-talk at data rates of 10 Gbit/s and pattern-free and noise reduced signal amplification at saturation condition demonstrated up to 40 Gbit/s.

[1]  Johann Peter Reithmaier,et al.  Size control of InAs quantum dashes , 2005 .

[2]  Philippe Caroff,et al.  High-gain and low-threshold InAs quantum-dot lasers on InP , 2005 .

[3]  Masahiro Tsuchiya,et al.  Saturable absorption of highly stacked InAs quantum dot layer in 1.5μm band , 2006 .

[4]  M. Krakowski,et al.  Static and dynamic properties of laterally coupled DFB lasers based on InAs/InP QDash structures , 2005 .

[5]  Sylvain Raymond,et al.  External-cavity quantum-dot laser tunable through 1.55μm , 2006 .

[6]  A. Forchel,et al.  Epitaxial growth of 1.55 /spl mu/m emitting InAs quantum dashes on InP-based heterostructures by GS-MBE for long-wavelength laser applications , 2002, International Conference on Molecular Bean Epitaxy.

[7]  Theda Daniels-Race,et al.  Effects of the matrix on self-organization of InAs quantum nanostructures grown on InP substrates , 2002 .

[8]  Johann Peter Reithmaier,et al.  Magneto-optical investigations of single self-assembled InAs/InGaAlAs quantum dashes , 2003 .

[9]  M. Krakowski,et al.  Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[10]  Alfred Forchel,et al.  Temperature dependence of the exciton homogeneous linewidth in In 0.60 Ga 0.40 As/GaAs self-assembled quantum dots , 2002 .

[11]  Hanan Dery,et al.  On the nature of quantum dash structures , 2004 .

[12]  Michel Gendry,et al.  Size and shape effects on excitons and biexcitons in single InAs∕InP quantum dots , 2006 .

[13]  Rui Q. Yang,et al.  Lasing characteristics of InAs quantum-dot lasers on (001) InP substrate , 2003 .

[14]  A. Stintz,et al.  Room-temperature operation of InAs quantum-dash lasers on InP [001] , 2001, IEEE Photonics Technology Letters.

[15]  D. Bimberg,et al.  Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers , 2000, IEEE Photonics Technology Letters.

[16]  Sylvain Raymond,et al.  InAs self‐assembled quantum dots on InP by molecular beam epitaxy , 1996 .

[17]  Ivo Montrosset,et al.  Optical gain properties of InAs/InAlGaAs/InP quantum dash structures with a spectral gain bandwidth of more than 300 nm , 2006 .

[18]  Johann Peter Reithmaier,et al.  Low-threshold high-quantum-efficiency laterally gain-coupled InGaAs/AlGaAs distributed feedback lasers , 1999 .

[19]  Michel Gendry,et al.  Surface effects on shape, self-organization and photoluminescence of InAs islands grown on InAlAs/InP(001) , 2002 .

[20]  A. R. Kovsh,et al.  Effect of matrix on InAs self-organized quantum dots on InP substrate , 1998 .

[21]  A. P. Vasil’ev,et al.  High performance quantum dot lasers on GaAs substrates operating in 1.5 /spl mu/m range , 2003 .

[22]  H. Ishikawa,et al.  Application of spectral-hole burning in the inhomogeneously broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device , 2000, IEEE Photonics Technology Letters.

[23]  G. Eisenstein,et al.  On the noise properties of linear and nonlinear quantum-dot semiconductor optical amplifiers: the impact of inhomogeneously broadened gain and fast carrier dynamics , 2004, IEEE Journal of Quantum Electronics.

[24]  Y. Arakawa,et al.  Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers , 2004 .

[25]  Yasuhiko Arakawa,et al.  Controlling Polarization of 1.55-µm Columnar InAs Quantum Dots with Highly Tensile-Strained InGaAsP Barriers on InP(001) , 2006 .

[26]  Nikolai N. Ledentsov,et al.  1.3 [micro sign]m GaAs-based laser using quantum dots obtained by activated spinodal decomposition , 1999 .

[27]  D. Bimberg,et al.  LOW THRESHOLD QUANTUM DOT INJECTION LASER EMITTING AT 1.9MU M , 1998 .

[28]  Michel Calligaro,et al.  Cross-saturation dynamics in InAs/InP quantum dash optical amplifiers operating at 1550 nm , 2005 .

[29]  Johann Peter Reithmaier,et al.  Time-resolved chirp in an InAs∕InP quantum-dash optical amplifier operating with 10Gbit∕s data , 2005 .

[30]  Johann Peter Reithmaier,et al.  Photoreflectance-probed excited states in InAs∕InGaAlAs quantum dashes grown on InP substrate , 2006 .

[31]  Jesper Mørk,et al.  Ultrafast gain and index dynamics of quantum dash structures emitting at 1.55μm , 2006 .

[32]  Johann Peter Reithmaier,et al.  Photoreflectance investigation of InAs quantum dashes embedded in In0.53Ga0.47As∕In0.53Ga0.23Al0.24As quantum well grown on InP substrate , 2006 .

[33]  W. Sibbett,et al.  Fast quantum-dot saturable absorber for passive mode-locking of solid-State lasers , 2004, IEEE Photonics Technology Letters.

[34]  A. Forchel,et al.  Long-wavelength InP-based quantum-dash lasers , 2002, IEEE Photonics Technology Letters.

[35]  Hanan Dery,et al.  InP based lasers and optical amplifiers with wire-/dot-like active regions , 2005 .

[36]  J. Yang,et al.  Growth and characteristics of P-doped InAs tunnel injection quantum-dash lasers on InP , 2006, IEEE Photonics Technology Letters.

[37]  Johann Peter Reithmaier,et al.  Optically probed wetting layer in InAs/InGaAlAs/InP quantum-dash structures , 2005 .

[38]  M. Gioannini,et al.  Numerical modeling of the emission characteristics of semiconductor quantum dash materials for lasers and optical amplifiers , 2004, IEEE Journal of Quantum Electronics.

[39]  Johann Peter Reithmaier,et al.  High-performance GaInAs/GaAs quantum-dot lasers based on a single active layer , 1999 .

[40]  Wilson Sibbett,et al.  Fast quantum-dot saturable absorber for passive mode-locking of solid-state lasers , 2003, The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003..

[41]  T. W. Berg,et al.  Saturation and noise properties of quantum-dot optical amplifiers , 2004, IEEE Journal of Quantum Electronics.

[42]  J. Yang,et al.  Growth and characteristics of ultralow threshold 1.45 μm metamorphic InAs tunnel injection quantum dot lasers on GaAs , 2006 .

[43]  G. Eisenstein,et al.  Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs-InP quantum-dash semiconductor optical amplifiers operating at 1550 nm , 2003, IEEE Photonics Technology Letters.

[44]  Hiroshi Ishikawa,et al.  Quantum-Dot Semiconductor Optical Amplifiers for High Bit-Rate Signal Processing over 40 Gbit/s , 2001 .

[45]  D. Deppe,et al.  1.3 μm room-temperature GaAs-based quantum-dot laser , 1998 .

[46]  Johann Peter Reithmaier,et al.  Recombination mechanisms in InAs/InP quantum dash lasers studied using high hydrostatic pressure , 2004 .

[47]  Michel Calligaro,et al.  Multiple wavelength amplification in wide band high power 1550 nm quantum dash optical amplifier , 2004 .

[48]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[49]  Andreas Stintz,et al.  Formation of quantum wires and quantum dots on buffer layers grown on InP substrates , 2003 .

[50]  Z. Mi,et al.  DC and Dynamic Characteristics of P-Doped and Tunnel Injection 1.65-$\mu{\hbox {m}}$ InAs Quantum-Dash Lasers Grown on InP (001) , 2006, IEEE Journal of Quantum Electronics.

[51]  T. W. Berg,et al.  Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers , 2004, IEEE Journal of Quantum Electronics.