Stability Analysis of the Reconstruction Step of the Voronoi Implicit Interface Method

In this paper we analyze the reconstruction step of the Voronoi implicit interface method (VIIM) introduced by Saye and Sethian. The VIIM is a powerful method to track multiple interfaces with a single function. The central idea of the VIIM is to use an unsigned distance function to represent the multiphase system, unlike the level set method which uses a signed distance function. The unsigned distance function is evolved according to the physics of the problem as in the level set method, but the new multiphase interface is defined in the so-called reconstruction step as the Voronoi interface of the updated $\varepsilon$-level lines. In this paper we analyze this reconstruction step in two dimensions. We show several geometric properties of the resulting interface. Most importantly, we study the asymptotic behavior of the interface when the reconstruction step is iterated. For two phases, we show that the process converges for any initial configuration and that the curvature of the limit phases are bounde...

[1]  Harald Garcke,et al.  A multi-phase Mullins–Sekerka system: matched asymptotic expansions and an implicit time discretisation for the geometric evolution problem , 1998, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[2]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[3]  Ron Kimmel,et al.  Active Contours for Multi-region Image Segmentation with a Single Level Set Function , 2013, SSVM.

[4]  Enhua Wu,et al.  Multiphase Interface Tracking with Fast Semi-Lagrangian Contouring , 2016, IEEE Transactions on Visualization and Computer Graphics.

[5]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[6]  Harald Garcke,et al.  On sharp interface limits of Allen--Cahn/Cahn--Hilliard variational inequalities , 2007 .

[7]  Amy Novick-Cohen,et al.  Triple-junction motion for an Allen-Cahn/Cahn-Hilliard system , 2000 .

[8]  Jan Sokolowski,et al.  A Level Set Method in Shape and Topology Optimization for Variational Inequalities , 2007, Int. J. Appl. Math. Comput. Sci..

[9]  J. Sethian,et al.  Structural Boundary Design via Level Set and Immersed Interface Methods , 2000 .

[10]  Xiaoming Wang,et al.  Color level sets: a multi-phase method for structural topology optimization with multiple materials , 2004 .

[11]  R. V. KoRN On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation , 2004 .

[12]  S. Osher,et al.  A Simple Level Set Method for Solving Stefan Problems , 1997, Journal of Computational Physics.

[13]  Michael Hintermüller,et al.  Multiphase Image Segmentation and Modulation Recovery Based on Shape and Topological Sensitivity , 2009, Journal of Mathematical Imaging and Vision.

[14]  Harald Garcke,et al.  On anisotropic order parameter models for multi-phase system and their sharp interface limits , 1998 .

[15]  S. Osher,et al.  An improved level set method for incompressible two-phase flows , 1998 .

[16]  J. Sethian,et al.  The Voronoi Implicit Interface Method and Computational Challenges in Multiphase Physics , 2012 .

[17]  R. I. Saye,et al.  An algorithm to mesh interconnected surfaces via the Voronoi interface , 2013, Engineering with Computers.

[18]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[19]  J. Sethian,et al.  The Voronoi Implicit Interface Method for computing multiphase physics , 2011, Proceedings of the National Academy of Sciences.

[20]  Harald Garcke,et al.  A singular limit for a system of degenerate Cahn-Hilliard equations , 2000, Advances in Differential Equations.

[21]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[22]  Michel C. Delfour Shapes and Geometries , 1987 .

[23]  Antoine Henrot,et al.  Variation et optimisation de formes , 2005 .

[24]  Harald Garcke,et al.  Relating phase field and sharp interface approaches to structural topology optimization , 2013 .

[25]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[26]  Jan Sokolowski,et al.  Level set method with topological derivatives in shape optimization , 2008, Int. J. Comput. Math..

[27]  P. Woodward,et al.  SLIC (Simple Line Interface Calculation) , 1976 .

[28]  James A. Sethian,et al.  Analysis and applications of the Voronoi Implicit Interface Method , 2012, J. Comput. Phys..

[29]  D. Chopp,et al.  A projection method for motion of triple junctions by level sets , 2002 .

[30]  J. Sethian,et al.  Multiscale Modeling of Membrane Rearrangement, Drainage, and Rupture in Evolving Foams , 2013, Science.

[31]  Harald Garcke,et al.  A MultiPhase Field Concept: Numerical Simulations of Moving Phase Boundaries and Multiple Junctions , 1999, SIAM J. Appl. Math..

[32]  L. Bronsard,et al.  A numerical method for tracking curve networks moving with curvature motion , 1995 .

[33]  M. HINTERMÜLLER,et al.  Optimal Shape Design Subject to Elliptic Variational Inequalities , 2011, SIAM J. Control. Optim..