Photonics and spectroscopy in nanojunctions: a theoretical insight.

The progress of experimental techniques at the nanoscale in the last decade made optical measurements in current-carrying nanojunctions a reality, thus indicating the emergence of a new field of research coined optoelectronics. Optical spectroscopy of open nonequilibrium systems is a natural meeting point for (at least) two research areas: nonlinear optical spectroscopy and quantum transport, each with its own theoretical toolbox. We review recent progress in the field comparing theoretical treatments of optical response in nanojunctions as is accepted in nonlinear spectroscopy and quantum transport communities. A unified theoretical description of spectroscopy in nanojunctions is presented. We argue that theoretical approaches of the quantum transport community (and in particular, the Green function based considerations) yield a convenient tool for optoelectronics when the radiation field is treated classically, and that differences between the toolboxes may become critical when studying the quantum radiation field in junctions.

[1]  M. Schreiber,et al.  Tailoring current flow patterns through molecular wires using shaped optical pulses , 2008 .

[2]  Mark A Ratner,et al.  Modeling light-induced charge transfer dynamics across a metal-molecule-metal junction: bridging classical electrodynamics and quantum dynamics. , 2014, The Journal of chemical physics.

[3]  A. Nitzan Molecules Take the Heat , 2007, Science.

[4]  D. Neuhauser,et al.  Dynamical quantum-electrodynamics embedding: combining time-dependent density functional theory and the near-field method. , 2012, The Journal of chemical physics.

[5]  Michael Galperin,et al.  Raman scattering in molecular junctions: a pseudoparticle formulation. , 2014, Nano letters.

[6]  Michael Galperin,et al.  Inelastic transport: a pseudoparticle approach. , 2012, Physical chemistry chemical physics : PCCP.

[7]  Stefan A. Maier,et al.  Quantum Plasmonics , 2016, Proceedings of the IEEE.

[8]  A. Nitzan,et al.  Molecular optoelectronics: the interaction of molecular conduction junctions with light. , 2012, Physical chemistry chemical physics : PCCP.

[9]  R. Ossikovski,et al.  Molecular Bending at the Nanoscale Evidenced by Tip-Enhanced Raman Spectroscopy in Tunneling Mode on Thiol Self-Assembled Monolayers , 2016 .

[10]  L. Kronik,et al.  Voltage tuning of vibrational mode energies in single-molecule junctions , 2014, Proceedings of the National Academy of Sciences.

[11]  Y. Paltiel,et al.  Collective effects in charge transfer within a hybrid organic-inorganic system. , 2009, Physical review letters.

[12]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[13]  Massimiliano Esposito,et al.  A self-consistent quantum master equation approach to molecular transport , 2010, 1004.2533.

[14]  Lin Guo,et al.  Theoretical investigation on surface‐enhanced Raman evidence for conformation transition of dimercaptoazobenzene adsorbed on gold nanoclusters , 2013 .

[15]  A. Jauho,et al.  Spin-polarized current and shot noise in the presence of spin flip in a quantum dot via nonequilibrium Green’s functions , 2008, 0802.0982.

[16]  Bo Liu,et al.  Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method. , 2006, Journal of the American Chemical Society.

[17]  H. Yanagi,et al.  Characterization of light emission from subphthalocyanine monolayers using scanning tunneling microscopy , 2006 .

[18]  A. Nitzan,et al.  Raman Scattering and Electronic Heating in Molecular Conduction Junctions , 2011 .

[19]  Emanuel Gull,et al.  Taming the Dynamical Sign Problem in Real-Time Evolution of Quantum Many-Body Problems. , 2015, Physical review letters.

[20]  Guillaume Schull,et al.  Optical probe of quantum shot-noise reduction at a single-atom contact. , 2010, Physical review letters.

[21]  De‐Yin Wu,et al.  Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials , 2016 .

[22]  Michael Y. Galperin,et al.  Coherence in charge and energy transfer in molecular junctions , 2013 .

[23]  Eloïse Devaux,et al.  Thermodynamics of molecules strongly coupled to the vacuum field. , 2013, Angewandte Chemie.

[24]  Michael Galperin,et al.  Self-consistent full counting statistics of inelastic transport , 2011 .

[25]  P. Nordlander Molecular Tuning of Quantum Plasmon Resonances , 2014, Science.

[26]  Tao Wang,et al.  Molecular electronic plasmonics , 2016 .

[27]  F. J. G. D. Abajo Microscopy: Plasmons go quantum , 2012, Nature.

[28]  First-principles analysis of molecular conduction using quantum chemistry software , 2002, cond-mat/0206551.

[29]  Zach DeVito,et al.  Opt , 2017 .

[30]  P. Nordlander,et al.  Quantum plasmonics: Symmetry-dependent plasmon-molecule coupling and quantized photoconductances , 2012 .

[31]  T. Ebbesen,et al.  Reversible switching of ultrastrong light-molecule coupling. , 2011 .

[32]  Shigeru Ajisaka,et al.  The Molecular Photo-Cell: Quantum Transport and Energy Conversion at Strong Non-Equilibrium , 2014, Scientific Reports.

[33]  Y. Yamamoto,et al.  A single-photon turnstile device , 1999, Nature.

[34]  F J García de Abajo,et al.  Quantum plexcitonics: strongly interacting plasmons and excitons. , 2011, Nano letters.

[35]  Michael Galperin,et al.  Simulation of optical response functions in molecular junctions. , 2016, The Journal of chemical physics.

[36]  Massimiliano Esposito,et al.  Efficiency fluctuations in quantum thermoelectric devices , 2015 .

[37]  D. Neuhauser,et al.  Nonlinear nanopolaritonics: finite-difference time-domain Maxwell-Schrödinger simulation of molecule-assisted plasmon transfer. , 2009, The Journal of chemical physics.

[38]  J. Sugawara,et al.  Relationship between Aortic Compliance and Impact of Cerebral Blood Flow Fluctuation to Dynamic Orthostatic Challenge in Endurance Athletes , 2018, Front. Physiol..

[39]  Yousoo Kim,et al.  Real-space investigation of energy transfer in heterogeneous molecular dimers , 2016, Nature.

[40]  K. A. Brown,et al.  Electronic and optical vibrational spectroscopy of molecular transport junctions created by on-wire lithography. , 2013, Small.

[41]  Resonance fluorescence in transport through quantum dots: noise properties. , 2007, Physical review letters.

[42]  Hartmut Haug,et al.  Quantum Kinetics in Transport and Optics of Semiconductors , 2004 .

[43]  Robert van Leeuwen,et al.  Time propagation of the Kadanoff-Baym equations for inhomogeneous systems. , 2009, The Journal of chemical physics.

[44]  S. Mukamel,et al.  Superoperator nonequilibrium Green's function theory of many-body systems; applications to charge transfer and transport in open junctions , 2008, 0805.4260.

[45]  David E. Miller,et al.  Quantum Statistical Mechanics , 2002 .

[46]  Michael Galperin,et al.  Light-induced current in molecular junctions: Local field and non-Markov effects , 2011, 1103.3293.

[47]  R. V. Van Duyne,et al.  Observation of multiple vibrational modes in ultrahigh vacuum tip-enhanced Raman spectroscopy combined with molecular-resolution scanning tunneling microscopy. , 2012, Nano letters.

[48]  M. Ratner,et al.  Probing Charge States in Molecular Junctions Using Raman Spectroscopy , 2012 .

[49]  Leo P. Kadanoff,et al.  CONSERVATION LAWS AND CORRELATION FUNCTIONS , 1961 .

[50]  K. Kern,et al.  Quantitative mapping of fast voltage pulses in tunnel junctions by plasmonic luminescence , 2013 .

[51]  M. Moskovits,et al.  Single-molecule surface-enhanced Raman spectroscopy from a molecularly-bridged silver nanoparticle dimer , 2008 .

[52]  A. Dasgupta,et al.  Directional Fluorescence Emission Mediated by Chemically-Prepared Plasmonic Nanowire Junctions , 2016 .

[53]  A. Nitzan,et al.  Light-induced electronic non-equilibrium in plasmonic particles. , 2013, The Journal of chemical physics.

[54]  Michael Galperin,et al.  A time-dependent response to optical excitation in molecular junctions , 2012 .

[55]  J. A. Carter,et al.  Ultrafast Flash Thermal Conductance of Molecular Chains , 2007, Science.

[56]  V. A. Apkarian,et al.  Stark Effect and Nonlinear Impedance of the Asymmetric Ag-CO-Ag Junction: An Optical Rectenna , 2016 .

[57]  Current-induced light emission and light-induced current in molecular-tunneling junctions. , 2005, Physical review letters.

[58]  F. Laussy,et al.  Excitation with quantum light. II. Exciting a two-level system , 2016, 1609.00857.

[59]  E. Fabrizio,et al.  A nanogap–array platform for testing the optically modulated conduction of gold–octithiophene–gold junctions for molecular optoelectronics , 2012 .

[60]  Y. Selzer,et al.  Response of molecular junctions to surface plasmon polaritons. , 2010, Angewandte Chemie.

[61]  S. Mukamel,et al.  Time-and-frequency-gated photon coincidence counting; a novel multidimensional spectroscopy tool , 2016, 1602.03241.

[62]  Rui Zhang,et al.  Generation of molecular hot electroluminescence by resonant nanocavity plasmons , 2010 .

[63]  D. Janes,et al.  In situ Structural Characterization of Metal−Molecule−Silicon Junctions Using Backside Infrared Spectroscopy , 2008 .

[64]  George C. Schatz,et al.  Single-Molecule Tip-Enhanced Raman Spectroscopy , 2012 .

[65]  Yijing Yan,et al.  Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach. , 2007, The Journal of chemical physics.

[66]  Guillaume Schull,et al.  Electron-plasmon and electron-electron interactions at a single atom contact. , 2009, Physical review letters.

[67]  P. Ordejón,et al.  Density-functional method for nonequilibrium electron transport , 2001, cond-mat/0110650.

[68]  C. Frisbie,et al.  Photoswitchable Hopping Transport in Molecular Wires 4 nm in Length , 2016 .

[69]  J. Fransson Nonequilibrium theory for a quantum dot with arbitrary on-site correlation strength coupled to leads , 2005 .

[70]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[71]  M. Wegewijs,et al.  Time-dependent quantum transport: Causal superfermions, exact fermion-parity protected decay modes, and Pauli exclusion principle for mixed quantum states , 2013, 1311.1368.

[72]  Jeremy J. Baumberg,et al.  Single-molecule optomechanics in “picocavities” , 2016, Science.

[73]  M. Wegewijs,et al.  Fermionic superoperators for zero-temperature nonlinear transport: Real-time perturbation theory and renormalization group for Anderson quantum dots , 2012, 1207.3207.

[74]  Zhong Lin Wang,et al.  Shell-isolated nanoparticle-enhanced Raman spectroscopy , 2010, Nature.

[75]  S. Mukamel Principles of Nonlinear Optical Spectroscopy , 1995 .

[76]  I. Sandalov,et al.  Shell effects in nonlinear magnetotransport through small quantum dots , 2007 .

[77]  M. Ratner,et al.  Comment on "Frequency-domain stimulated and spontaneous light emission signals at molecular junctions" [J. Chem. Phys. 141, 074107 (2014)]. , 2015, The Journal of chemical physics.

[78]  A. Nitzan,et al.  Charge-carrier-induced frequency renormalization, damping, and heating of vibrational modes in nanoscale junctions , 2013, 1307.7288.

[79]  W. M. Clift,et al.  Ballistic electron and photocurrent transport in Au-molecular layer-GaAs diodes , 2007 .

[80]  Eran Rabani,et al.  Exact calculation of the time convolutionless master equation generator: Application to the nonequilibrium resonant level model. , 2015, The Journal of chemical physics.

[81]  C. Schönenberger,et al.  Spectroscopy of Molecular Junction Networks Obtained by Place Exchange in 2D Nanoparticle Arrays , 2007 .

[82]  Eran Rabani,et al.  Real-time path integral approach to nonequilibrium many-body quantum systems. , 2007, Physical review letters.

[83]  De‐Yin Wu,et al.  Photon-driven charge transfer and photocatalysis of p-aminothiophenol in metal nanogaps: a DFT study of SERS. , 2011, Chemical communications.

[84]  Gordey B. Lesovik,et al.  Charge distribution in quantum shot noise , 1993 .

[85]  N J Halas,et al.  Optical spectroscopy of conductive junctions in plasmonic cavities. , 2010, Nano letters.

[86]  Paul C. Martin,et al.  Stationary Entropy Principle and Renormalization in Normal and Superfluid Systems. I. Algebraic Formulation , 1964 .

[87]  W. Belzig,et al.  Over-bias light emission due to higher order quantum noise of a tunnel junction , 2014, 2015 International Conference on Noise and Fluctuations (ICNF).

[88]  E. Bittner,et al.  Probing polaron excitation spectra in organic semiconductors by photoinduced-absorption-detected two-dimensional coherent spectroscopy , 2016, 1606.01503.

[89]  S. Mukamel,et al.  Frequency-domain stimulated and spontaneous light emission signals at molecular junctions. , 2014, The Journal of chemical physics.

[90]  Stephen D. Gedney,et al.  Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics , 2011, Synthesis Lectures on Computational Electromagnetics.

[91]  Michael Galperin,et al.  Optical spectroscopy of molecular junctions: Nonequilibrium Green's functions perspective. , 2016, The Journal of chemical physics.

[92]  Peter Nordlander,et al.  Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy. , 2007, Nano letters.

[93]  Guanhua Chen,et al.  Quantum mechanical modeling the emission pattern and polarization of nanoscale light emitting diodes. , 2016, Nanoscale.

[94]  Z. Kim Single-molecule surface-enhanced Raman scattering: Current status and future perspective , 2014 .

[95]  Michael Galperin,et al.  Collective Plasmon-Molecule Excitations in Nanojunctions: Quantum Consideration , 2012 .

[96]  Zhizhou Yu,et al.  Full-counting statistics of transient energy current in mesoscopic systems , 2016, 1706.07182.

[97]  F. Laussy,et al.  Excitation with quantum light. I. Exciting a harmonic oscillator , 2016, 1601.06187.

[98]  T. Ebbesen,et al.  Modifying chemical landscapes by coupling to vacuum fields. , 2012, Angewandte Chemie.

[99]  Yongseok Jun,et al.  FTIR spectroscopy of buried interfaces in molecular junctions. , 2004, Journal of the American Chemical Society.

[100]  Andrew G. Glen,et al.  APPL , 2001 .

[101]  Y. Imry,et al.  Detection of quantum noise , 2000 .

[102]  Sarah Lerch,et al.  Quantum Plasmonics: Optical Monitoring of DNA‐Mediated Charge Transfer in Plasmon Rulers , 2016, Advanced materials.

[103]  S. Mukamel,et al.  Non-adiabatic dynamics of molecules in optical cavities. , 2016, The Journal of chemical physics.

[104]  Lin Wu,et al.  Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions , 2014, Science.

[105]  Mark A. Ratner,et al.  First-principles based matrix Green's function approach to molecular electronic devices: general formalism , 2002 .

[106]  A. Komnik,et al.  Towards full counting statistics for the Anderson impurity model , 2006 .

[107]  E. Cooper,et al.  E. J. Will , 1985 .

[108]  Wenqi Zhu,et al.  Quantum mechanical effects in plasmonic structures with subnanometre gaps , 2016, Nature Communications.

[109]  N. Schneider,et al.  Plasmonic excitation of light emission and absorption by porphyrine molecules in a scanning tunneling microscope , 2012 .

[110]  James M Tour,et al.  Simultaneous measurements of electronic conduction and Raman response in molecular junctions. , 2008, Nano letters.

[111]  M. Sakaue,et al.  Interplay between Plasmon Luminescence and Vibrationally Resolved Molecular Luminescence Induced by Scanning Tunneling Microscopy , 2012, 1212.0081.

[112]  Jonas Fransson,et al.  Non-Equilibrium Nano-Physics: A Many-Body Approach , 2010 .

[113]  Hideo Aoki,et al.  Nonequilibrium dynamical mean-field theory and its applications , 2013, 1310.5329.

[114]  Dhabih V. Chulhai,et al.  Molecular-Resolution Interrogation of a Porphyrin Monolayer by Ultrahigh Vacuum Tip-Enhanced Raman and Fluorescence Spectroscopy. , 2015, Nano letters.

[115]  G. Schatz,et al.  Surface-enhanced raman scattering of pyrazine at the junction between two Ag20 nanoclusters. , 2006, Nano letters.

[116]  R. V. Duyne,et al.  Single Molecule Surface-Enhanced Raman Spectroscopy without Nanogaps , 2013 .

[117]  Feng Chen,et al.  Nonequilibrium diagrammatic technique for Hubbard Green functions , 2016, 1610.00036.

[118]  G. Cohen,et al.  Decoherence and lead-induced interdot coupling in nonequilibrium electron transport through interacting quantum dots: A hierarchical quantum master equation approach , 2013, 1309.1170.

[119]  J. V. van Ruitenbeek,et al.  Shot noise measurements on a single molecule. , 2006, Nano letters.

[120]  M. Brandbyge,et al.  Current-induced atomic dynamics, instabilities, and Raman signals: Quasiclassical Langevin equation approach , 2012, 1205.0745.

[121]  Theory of strongly correlated electron systems. I. Exact Hamiltonian, Hubbard-Anderson models and perturbation theory near atomic limit within non-orthogonal basis set , 2000 .

[122]  Marcel Mayor,et al.  Redox-switching in a viologen-type adlayer: an electrochemical shell-isolated nanoparticle enhanced Raman spectroscopy study on Au(111)-(1×1) single crystal electrodes. , 2011, ACS nano.

[123]  Mark A. Ratner,et al.  Classical Electrodynamics Coupled to Quantum Mechanics for Calculation of Molecular Optical Properties: a RT-TDDFT/FDTD Approach , 2010 .

[124]  De‐Yin Wu,et al.  Extraordinary enhancement of Raman scattering from pyridine on single crystal Au and Pt electrodes by shell-isolated Au nanoparticles. , 2011, Journal of the American Chemical Society.

[125]  Dark plasmons in hot spot generation and polarization in interelectrode nanoscale junctions. , 2013, Nano letters.

[126]  R. Saija,et al.  Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics. , 2010, Physical review letters.

[127]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[128]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[129]  Julian Schwinger,et al.  Brownian Motion of a Quantum Oscillator , 1961 .

[130]  M. Ratner,et al.  Molecular junctions: can pulling influence optical controllability? , 2014, Nano letters.

[131]  T. Ebbesen,et al.  Tuning the Work‐Function Via Strong Coupling , 2013, Advanced materials.

[132]  D. Mills,et al.  Viewing the interior of a single molecule: vibronically resolved photon imaging at submolecular resolution. , 2010, Physical review letters.

[133]  N. Schneider,et al.  Shot noise from single atom contacts in a scanning tunneling microscope , 2016 .

[134]  Z. Dong,et al.  Full Quantum Theory of Molecular Hot-Electroluminescence in Scanning Tunneling Microscope Tunnel Junctions , 2015 .

[135]  R. Naaman,et al.  Photospintronics: Magnetic Field-Controlled Photoemission and Light-Controlled Spin Transport in Hybrid Chiral Oligopeptide-Nanoparticle Structures , 2016, Nano letters.

[136]  Tõnu Pullerits,et al.  Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell , 2014, Nature Communications.

[137]  Shaul Mukamel,et al.  Nonlinear optical signals and spectroscopy with quantum light , 2016, 1605.06746.

[138]  W. Schneider,et al.  Luminescence experiments on supported molecules with the scanning tunneling microscope , 2010 .

[139]  George C. Schatz,et al.  A Look at the Origin and Magnitude of the Chemical Contribution to the Enhancement Mechanism of Surface-Enhanced Raman Spectroscopy (SERS): Theory and Experiment , 2013 .

[140]  G. Nardin,et al.  Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure. , 2013, Optics express.

[141]  G. Baym,et al.  Self-Consistent Approximations in Many-Body Systems , 1962 .

[142]  S. Datta,et al.  CONDUCTANCE SPECTRA OF MOLECULAR WIRES , 1998 .

[143]  Pawel Danielewicz,et al.  Quantum theory of nonequilibrium processes, I , 1984 .

[144]  Jeremy J. Baumberg,et al.  Nanooptics of Molecular-Shunted Plasmonic Nanojunctions , 2014, Nano letters.

[145]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[146]  Y. Blanter,et al.  Shot noise in mesoscopic conductors , 1999, cond-mat/9910158.

[147]  Jian-hui Jiang,et al.  Laser-Induced Formation of Metal−Molecule−Metal Junctions between Au Nanoparticles As Probed by Surface-Enhanced Raman Spectroscopy , 2008 .

[148]  Meir,et al.  Anderson model out of equilibrium: Noncrossing-approximation approach to transport through a quantum dot. , 1994, Physical review. B, Condensed matter.

[149]  A. Misu,et al.  Electronic excited state of NO adsorbed on Cu(111): A two-photon photoemission study , 1995 .

[150]  J. C. Ward,et al.  Ground-State Energy of a Many-Fermion System. II , 1960 .

[151]  S. Mukamel,et al.  Two-dimensional infrared spectroscopy of vibrational polaritons of molecules in an optical cavity. , 2016, The Journal of chemical physics.

[152]  A. Nitzan,et al.  Raman scattering from molecular conduction junctions: Charge transfer mechanism , 2012 .

[153]  Michael T. L. Casford,et al.  Sum Frequency Generation Spectrum of a Self-Assembled Monolayer Containing Two Different Methyl Group Orientations , 2012 .

[154]  S. Zou,et al.  Coupled surface-enhanced Raman spectroscopy and electrical conductivity measurements of 1,4-phenylene diisocyanide in molecular electronic junctions. , 2006, Analytical chemistry.

[155]  Z. Ioffe,et al.  Detection of heating in current-carrying molecular junctions by Raman scattering. , 2008, Nature nanotechnology.

[156]  S. Mukamel,et al.  Coherent (photon) vs incoherent (current) detection of multidimensional optical signals from single molecules in open junctions. , 2015, The Journal of chemical physics.

[157]  S. Mukamel,et al.  Stimulated Raman Spectroscopy with Entangled Light: Enhanced Resolution and Pathway Selection , 2014, The journal of physical chemistry letters.

[158]  M. Sakaue,et al.  Vibration-assisted upconversion of molecular luminescence induced by scanning tunneling microscopy , 2013, Nanoscale Research Letters.

[159]  M. Brandbyge,et al.  Light emission probing quantum shot noise and charge fluctuations at a biased molecular junction. , 2012, Physical review letters.

[160]  Martin Eckstein,et al.  Nonequilibrium dynamical mean-field calculations based on the noncrossing approximation and its generalizations , 2010, 1005.1872.

[161]  M. Ratner,et al.  Molecular Transport Junctions: An Introduction , 2004 .

[162]  De‐Yin Wu,et al.  Revealing Intermolecular Interaction and Surface Restructuring of an Aromatic Thiol Assembling on Au(111) by Tip-Enhanced Raman Spectroscopy. , 2016, Analytical chemistry.

[163]  L. Venkataraman,et al.  Single-molecule junctions beyond electronic transport. , 2013, Nature nanotechnology.

[164]  S. Mukamel Superoperator representation of nonlinear response: unifying quantum field and mode coupling theories. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[165]  S. J. van der Molen,et al.  Light-controlled conductance switching of ordered metal-molecule-metal devices. , 2009, Nano letters.

[166]  H. Rabitz,et al.  Light-driven electron transport through a molecular junction based on cross-conjugated systems. , 2014, The Journal of chemical physics.

[167]  V. A. Apkarian,et al.  Surface-Enhanced Raman Scattering of a Single Nanodumbbell: Dibenzyldithio-Linked Silver Nanospheres , 2012 .

[168]  D. Neuhauser,et al.  Modeling molecular effects on plasmon transport: silver nanoparticles with tartrazine. , 2011, The Journal of chemical physics.

[169]  Schoen,et al.  Mesoscopic quantum transport: Resonant tunneling in the presence of a strong Coulomb interaction. , 1994, Physical review. B, Condensed matter.

[170]  Theory of strongly correlated electron systems: Hubbard–Anderson models from an exact Hamiltonian, and perturbation theory near the atomic limit within a nonorthogonal basis set , 2000, cond-mat/0011259.

[171]  T. Frauenheim,et al.  Light Absorption of Contacted Molecules: Insights and Impediments from Atomistic Simulations , 2016 .

[172]  G. Fratesi,et al.  Ultrafast electron injection into photo-excited organic molecules. , 2016, Physical chemistry chemical physics : PCCP.

[173]  R. Naaman,et al.  Light-Controlled Spin Filtering in Bacteriorhodopsin , 2015, Nano letters.

[174]  P. Kelley,et al.  Theory of Electromagnetic Field Measurement and Photoelectron Counting , 1964 .

[175]  V. A. Apkarian,et al.  Raman Staircase in Charge Transfer SERS at the Junction of Fusing Nanospheres. , 2013, The journal of physical chemistry letters.

[176]  M. Leijnse,et al.  Kinetic equations for transport through single-molecule transistors , 2008, 0807.4027.

[177]  L. Spietz,et al.  Noise Intensity-Intensity Correlations and the Fourth Cumulant of Photo-assisted Shot Noise , 2013, Scientific Reports.

[178]  M. Esposito,et al.  Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems , 2008, 0811.3717.

[179]  J. A. Carter,et al.  Ultrafast nonlinear coherent vibrational sum-frequency spectroscopy methods to study thermal conductance of molecules at interfaces. , 2009, Accounts of chemical research.

[180]  A. Nitzan,et al.  Raman scattering from biased molecular conduction junctions: The electronic background and its temperature , 2011 .

[181]  G. Schatz,et al.  Combined linear response quantum mechanics and classical electrodynamics (QM/ED) method for the calculation of surface-enhanced Raman spectra. , 2012, The journal of physical chemistry. A.

[183]  J. Aizpurua,et al.  Optical transport and sensing in plexcitonic nanocavities. , 2013, Optics express.

[184]  Hisao Nakamura,et al.  Conductance and SERS Measurement of Benzenedithiol Molecules Bridging Between Au Electrodes , 2013 .

[185]  A. Fetter,et al.  Quantum Theory of Many-Particle Systems , 1971 .

[186]  Michael Galperin,et al.  Transport and optical response of molecular junctions driven by surface plasmon polaritons , 2009, 0911.2499.

[187]  T. Ebbesen,et al.  Polariton dynamics under strong light-molecule coupling. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[188]  M. Chergui,et al.  Fluorescence and phosphorescence from individual molecules excited by local electron tunneling. , 2005, Physical review letters.

[189]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[190]  Abraham Nitzan,et al.  Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces , 1980 .

[191]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[192]  Toshiaki Hayashi,et al.  Bidirectional Counting of Single Electrons , 2006, Science.

[193]  C. Emary,et al.  Bunching and antibunching in electronic transport , 2012, 1201.6323.

[194]  C. Marianetti,et al.  Electronic structure calculations with dynamical mean-field theory , 2005, cond-mat/0511085.

[195]  Time-dependent approach to electron pumping in open quantum systems , 2007, cond-mat/0701279.

[196]  V. Mujica,et al.  SERS as a probe of charge-transfer pathways in hybrid dye/molecule-metal oxide complexes , 2014 .

[197]  S. Mukamel,et al.  Electroluminescence in Molecular Junctions: A Diagrammatic Approach. , 2015, Journal of chemical theory and computation.

[198]  M. Ratner,et al.  Raman scattering from nonequilibrium molecular conduction junctions. , 2009, Nano letters.

[199]  Zhenyu Zhang,et al.  Molecular hot electroluminescence due to strongly enhanced spontaneous emission rates in a plasmonic nanocavity. , 2015, Nanoscale.

[200]  Meir,et al.  Time-dependent transport in interacting and noninteracting resonant-tunneling systems. , 1994, Physical review. B, Condensed matter.

[201]  James M Tour,et al.  Vibrational and electronic heating in nanoscale junctions. , 2011, Nature nanotechnology.

[202]  Richard P Van Duyne,et al.  Creating, characterizing, and controlling chemistry with SERS hot spots. , 2013, Physical chemistry chemical physics : PCCP.

[203]  R. Arielly,et al.  Accurate determination of plasmonic fields in molecular junctions by current rectification at optical frequencies. , 2011, Nano letters.

[204]  S. Mukamel,et al.  Many-body theory of current-induced fluorescence in molecular junctions , 2006 .

[205]  M. Kiguchi,et al.  Surface enhanced Raman scattering of a single molecular junction. , 2015, Physical chemistry chemical physics : PCCP.

[206]  Nan Jiang,et al.  Recent Advances in Tip-Enhanced Raman Spectroscopy. , 2014, The journal of physical chemistry letters.

[207]  Matthew D Sonntag,et al.  Tip-Enhanced Raman Spectroscopy with Picosecond Pulses. , 2014, The journal of physical chemistry letters.

[208]  B. Ocko,et al.  Direct structural observation of a molecular junction by high-energy x-ray reflectometry. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[209]  S. Mukamel,et al.  Suppression of population transport and control of exciton distributions by entangled photons , 2013, Nature Communications.

[210]  S. Fujii,et al.  Surface enhanced Raman scattering of single 1,4-Benzenedithiol molecular junction , 2016 .

[211]  N J Halas,et al.  Electronic and optical properties of electromigrated molecular junctions , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[212]  Meir,et al.  Landauer formula for the current through an interacting electron region. , 1992, Physical review letters.

[213]  Electron counting statistics and coherent states of electric current , 1996, cond-mat/9607137.

[214]  R Naaman,et al.  Chiral-Induced Spin Selectivity Effect. , 2012, The journal of physical chemistry letters.

[215]  Javier Aizpurua,et al.  Close encounters between two nanoshells. , 2008, Nano letters.

[216]  R. Berndt,et al.  Tunneling-induced luminescence from adsorbed organic molecules with submolecular lateral resolution , 2002 .

[217]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[218]  Petri Myohanen,et al.  Kadanoff-Baym approach to quantum transport through interacting nanoscale systems: From the transient to the steady-state regime , 2009, 0906.2136.

[219]  Peter W. Doak,et al.  Interplay of Bias-Driven Charging and the Vibrational Stark Effect in Molecular Junctions. , 2016, Nano letters.

[220]  R. Naaman,et al.  Spin Selectivity in Electron Transmission Through Self-Assembled Monolayers of Double-Stranded DNA , 2011, Science.

[221]  Yijing Yan Theory of open quantum systems with bath of electrons and phonons and spins: many-dissipaton density matrixes approach. , 2014, The Journal of chemical physics.

[222]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[223]  Michelle S. Vezie,et al.  Ultrafast decoherence dynamics govern photocarrier generation efficiencies in polymer solar cells , 2016, Scientific Reports.

[224]  G. Stefanucci,et al.  Charge dynamics in molecular junctions: Nonequilibrium Green's function approach made fast , 2013, 1311.4691.

[225]  Massimiliano Esposito,et al.  Nature of heat in strongly coupled open quantum systems , 2014, 1408.3608.

[226]  M. Sakaue,et al.  Effects of Interference between Energy Absorption Processes of Molecule and Surface Plasmons on Light Emission Induced by Scanning Tunneling Microscopy , 2013, 1305.3811.

[227]  V. A. Apkarian,et al.  Observation and analysis of Fano-like lineshapes in the Raman spectra of molecules adsorbed at metal interfaces , 2015, 1509.03906.

[228]  A. Perelomov Generalized Coherent States and Their Applications , 1986 .

[229]  N. Schneider,et al.  Light emission from a double-decker molecule on a metal surface , 2011 .

[230]  Martin Moskovits,et al.  Persistent misconceptions regarding SERS. , 2013, Physical chemistry chemical physics : PCCP.

[231]  Uri Peskin,et al.  Coherently controlled molecular junctions. , 2012, The Journal of chemical physics.

[232]  Jeremy J. Baumberg,et al.  Revealing the quantum regime in tunnelling plasmonics , 2012, Nature.

[233]  Abraham Nitzan,et al.  Energy distribution and local fluctuations in strongly coupled open quantum systems: The extended resonant level model , 2016, 1607.07120.

[234]  R. Baer,et al.  Gate-Induced Intramolecular Charge Transfer in a Tunnel Junction: A Nonequilibrium Analysis , 2013 .

[235]  Liping Chen,et al.  Simple and accurate method for time-dependent transport along nanoscale junctions , 2014 .

[236]  H. P. Lu,et al.  Tunneling Electron Induced Charging and Light Emission of Single Panhematin Molecules , 2016 .

[237]  R. V. Van Duyne,et al.  Plasmon-Mediated Electron Transport in Tip-Enhanced Raman Spectroscopic Junctions. , 2015, The journal of physical chemistry letters.

[238]  D. Gust,et al.  Optical modulation of molecular conductance. , 2011, Nano letters.

[239]  Hua-Zhong Yu,et al.  Probing the Molecular Conformation of Self-Assembled Monolayers at Metal/ Semiconductor Interfaces by Vibrational Sum Frequency Generation Spectroscopy , 2009 .

[240]  J. Hubbard Electron correlations in narrow energy bands V. A perturbation expansion about the atomic limit , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[241]  V. A. Apkarian,et al.  Ultrafast Coherent Raman Scattering at Plasmonic Nanojunctions , 2016 .

[242]  D. Reichman,et al.  Anderson-Holstein model in two flavors of the noncrossing approximation , 2016, 1601.05755.

[243]  A. Nitzan,et al.  On the widths of Stokes lines in Raman scattering from molecules adsorbed at metal surfaces and in molecular conduction junctions. , 2016, The Journal of chemical physics.

[244]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[245]  Gaomin Tang,et al.  Full-counting statistics of charge and spin transport in the transient regime: A nonequilibrium Green's function approach , 2014, 1407.7362.

[246]  D. Natelson,et al.  Nanogap structures: combining enhanced Raman spectroscopy and electronic transport. , 2013, Physical chemistry chemical physics : PCCP.

[247]  Wang,et al.  Floquet-Liouville supermatrix approach: Time development of density-matrix operator and multiphoton resonance fluorescence spectra in intense laser fields. , 1986, Physical review. A, General physics.

[248]  John R. Lombardi,et al.  Theory of Enhance I Light Scattering from Molecules Adsorbed at the Metal-Solution Interface , 1979 .

[249]  M. Ratner,et al.  Raman scattering in current-carrying molecular junctions. , 2008, The Journal of chemical physics.

[250]  Daniel Neuhauser,et al.  Multiscale Maxwell-Schrodinger modeling: A split field finite-difference time-domain approach to molecular nanopolaritonics. , 2009, The Journal of chemical physics.

[251]  Jian-Feng Li,et al.  SERS and DFT study of water on metal cathodes of silver, gold and platinum nanoparticles. , 2010, Physical chemistry chemical physics : PCCP.

[252]  Gianluca Stefanucci,et al.  Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction , 2013 .

[253]  D. L. Jeanmaire,et al.  Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode , 1977 .

[254]  D. Ralph,et al.  Single-molecule conductance of pyridine-terminated dithienylethene switch molecules. , 2011, ACS nano.

[255]  P. Nordlander,et al.  Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport. , 2011, The Journal of chemical physics.

[256]  J. Gerritsen,et al.  Molecular spectroscopy of dye aggregates by scanning-tunneling-microscope-induced light emission , 2001 .

[257]  Shiwei Wu,et al.  Intramolecular photon emission from a single molecule in a scanning tunneling microscope , 2008 .

[258]  Abraham Nitzan,et al.  Optical properties of current carrying molecular wires. , 2006, The Journal of chemical physics.

[259]  D. Natelson,et al.  Surface-Enhanced Infrared Absorption of Self-Aligned Nanogap Structures , 2016 .

[260]  M. Ratner,et al.  On optical spectroscopy of molecular junctions , 2015, 1503.03890.

[261]  A. Nitzan,et al.  Light-induced current in molecular tunneling junctions excited with intense shaped pulses , 2007, 0709.0771.

[262]  Michael Galperin,et al.  Charge-transfer contribution to surface-enhanced Raman scattering in a molecular junction: Time-dependent correlations , 2011 .

[263]  W. Hess,et al.  Vibronic Raman scattering at the quantum limit of plasmons. , 2014, Nano letters.

[264]  A. Nitzan,et al.  Theory of light emission from quantum noise in plasmonic contacts: above-threshold emission from higher-order electron-plasmon scattering. , 2014, Physical review letters.

[265]  M. Helm,et al.  Light‐Induced Switching of Tunable Single‐Molecule Junctions , 2015, Advanced science.

[266]  M. Stockman Nanoplasmonics: past, present, and glimpse into future. , 2011, Optics express.

[267]  J. Ankerhold,et al.  Time-resolved statistics of nonclassical light in Josephson photonics , 2015, 1506.05626.

[268]  Michael Galperin,et al.  Linear optical response of current-carrying molecular junction: a nonequilibrium Green's function-time-dependent density functional theory approach. , 2008, The Journal of chemical physics.

[269]  T. Brandes,et al.  Resonance fluorescence in driven quantum dots: electron and photon correlations , 2008, 0807.4641.

[270]  Peter Nordlander,et al.  Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance , 2014, Nature Communications.

[271]  Low-frequency shot noise in double-barrier resonant-tunnelling structures in a strong magnetic field , 1996, cond-mat/9602104.

[272]  Optical and transport studies of single molecule tunnel junctions based on self-assembled monolayers , 2005, cond-mat/0502427.

[273]  Michael Galperin,et al.  Electrically Driven Spin Currents in DNA , 2013 .

[274]  U. Peskin,et al.  Transient Dynamics in Molecular Junctions: Picosecond Resolution from dc Measurements by a Laser Pulse Pair Sequence Excitation , 2013 .

[275]  M. Esposito,et al.  Transport in molecular states language: Generalized quantum master equation approach , 2008, 0811.4014.

[276]  P. Lodahl,et al.  Interfacing single photons and single quantum dots with photonic nanostructures , 2013, 1312.1079.

[277]  Y. Selzer,et al.  Spectroscopy of molecular junctions. , 2011, Chemical Society reviews.

[278]  J. Dionne,et al.  Quantum plasmon resonances of individual metallic nanoparticles , 2012, Nature.

[279]  B. Persson On the theory of surface-enhanced Raman scattering , 1981 .

[280]  K. Murch Beyond strong , 2016, Nature Physics.

[281]  S. Mukamel,et al.  Multidimensional optical spectroscopy of a single molecule in a current-carrying state. , 2010, The Journal of chemical physics.

[282]  Abraham Nitzan,et al.  Numerical studies of the interaction of an atomic sample with the electromagnetic field in two dimensions , 2011, 1104.3325.

[283]  D. Glattli,et al.  Experimental determination of the statistics of photons emitted by a tunnel junction. , 2010, Physical review letters.

[284]  M. O. Scully,et al.  Quantum theory of an optical maser. III - Theory of photoelectron counting statistics. , 1969 .

[285]  Wagner Expansions of nonequilibrium Green's functions. , 1991, Physical review. B, Condensed matter.

[286]  Dhabih V. Chulhai,et al.  Intramolecular insight into adsorbate-substrate interactions via low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy. , 2014, Journal of the American Chemical Society.

[287]  M. Ratner,et al.  Inelastic transport in the Coulomb blockade regime within a nonequilibrium atomic limit , 2008 .

[288]  H Germany,et al.  Electron-vibration interaction in single-molecule junctions: from contact to tunneling regimes. , 2008, Physical review letters.

[289]  G. Schatz,et al.  Evaluating Single-Molecule Stokes and Anti-Stokes SERS for Nanoscale Thermometry , 2015 .

[290]  Michael Galperin,et al.  Correlation between Raman scattering and conductance in a molecular junction , 2011 .

[291]  Emil Prodan,et al.  Quantum description of the plasmon resonances of a nanoparticle dimer. , 2009, Nano letters.

[292]  R. Haussmann Self-consistent Quantum-Field Theory and Bosonization for Strongly Correlated Electron Systems , 1999 .

[293]  J. Cuevas,et al.  Plasmon-Induced Conductance Enhancement in Single-Molecule Junctions , 2013 .

[294]  Uri Peskin,et al.  Pump-Probe Noise Spectroscopy of Molecular Junctions. , 2015, The journal of physical chemistry letters.

[295]  A. Borisov,et al.  Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. , 2012, Nano letters.

[296]  S. Petralia,et al.  Optically Transparent, Ultrathin Pt Films as Versatile Metal Substrates for Molecular Optoelectronics , 2006 .

[297]  M. Ratner,et al.  Experimental and theoretical studies of plasmon–molecule interactions , 2012, Reports on progress in physics. Physical Society.

[298]  An Introduction to Real-Time Renormalization Group , 1999, cond-mat/9909400.

[299]  D. Ahn,et al.  Transport theory of coupled quantum dots based on the auxiliary-operator method , 2010, 1010.1576.

[300]  Joonhee Lee,et al.  Vibronic motion with joint angstrom-femtosecond resolution observed through Fano progressions recorded within one molecule. , 2014, ACS nano.

[301]  S. Yochelis,et al.  Local light-induced magnetization using nanodots and chiral molecules. , 2014, Nano letters.

[302]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.