'Extremotaxis': Computing with a bacterial-inspired algorithm

We present a general-purpose optimization algorithm inspired by "run-and-tumble", the biased random walk chemotactic swimming strategy used by the bacterium Escherichia coli to locate regions of high nutrient concentration The method uses particles (corresponding to bacteria) that swim through the variable space (corresponding to the attractant concentration profile). By constantly performing temporal comparisons, the particles drift towards the minimum or maximum of the function of interest. We illustrate the use of our method with four examples. We also present a discrete version of the algorithm. The new algorithm is expected to be useful in combinatorial optimization problems involving many variables, where the functional landscape is apparently stochastic and has local minima, but preserves some derivative structure at intermediate scales.

[1]  Gen-ke Yang,et al.  Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem , 2006 .

[2]  Petros Koumoutsakos,et al.  Optimization based on bacterial chemotaxis , 2002, IEEE Trans. Evol. Comput..

[3]  Marco Dorigo,et al.  Ant colony optimization theory: A survey , 2005, Theor. Comput. Sci..

[4]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[5]  G. Magoulas,et al.  Improved processing of microarray data using image reconstruction techniques , 2003, IEEE Transactions on NanoBioscience.

[6]  N. Trefethen A Hundred-dollar Hundred-digit Challenge , 2002 .

[7]  Gilbert Strang Learning from 100 Numbers , 2005, Science.

[8]  Dmitry Yu. Zubarev,et al.  Global minimum structure searches via particle swarm optimization , 2007, J. Comput. Chem..

[9]  Claus Thorn Ekstrøm,et al.  Spot shape modelling and data transformations for microarrays , 2004, Bioinform..

[10]  Massimo Vergassola,et al.  ‘Infotaxis’ as a strategy for searching without gradients , 2007, Nature.

[11]  H. Berg,et al.  Temporal comparisons in bacterial chemotaxis. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[12]  G. Wadhams,et al.  Making sense of it all: bacterial chemotaxis , 2004, Nature Reviews Molecular Cell Biology.

[13]  Jeffrey L. Solka,et al.  Spectral embedding finds meaningful (relevant) structure in image and microarray data , 2005, BMC Bioinformatics.

[14]  W. Bialek,et al.  Adaptation and optimal chemotactic strategy for E. coli , 1997, adap-org/9706001.

[15]  Emmanuel Barillot,et al.  A noise-resistant algorithm for grid finding in microarray image analysis , 2006, Machine Vision and Applications.

[16]  I A Basheer,et al.  Artificial neural networks: fundamentals, computing, design, and application. , 2000, Journal of microbiological methods.

[17]  H. Bremermann Chemotaxis and optimization , 1974 .

[18]  J. Locsei,et al.  Persistence of direction increases the drift velocity of run and tumble chemotaxis , 2007, Journal of mathematical biology.

[19]  R. Bellman,et al.  Proceedings of Symposia in Applied Mathematics. , 1961 .

[20]  Rudolph S. Parrish,et al.  BMC Bioinformatics BioMed Central Research article Sources of variation in Affymetrix microarray experiments , 2005 .

[21]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[22]  Vincent Barra Robust segmentation and analysis of DNA microarray spots using an adaptative split and merge algorithm , 2006, Comput. Methods Programs Biomed..

[23]  D. Bray Protein molecules as computational elements in living cells , 1995, Nature.

[24]  Wei Li,et al.  Combined projected gradient algorithm for linear programming , 2006, Optim. Methods Softw..

[25]  Stan Wagon,et al.  The SIAM 100-Digit Challenge - A study in High-Accuracy Numerical Computing , 2004, The SIAM 100-Digit Challenge.

[26]  L. Rueda,et al.  Spot Detection and Image Segmentation in DNA Microarray Data , 2005, Applied bioinformatics.

[27]  Donald A. Adjeroh,et al.  On denoising and compression of DNA microarray images , 2006, Pattern Recognit..