High Brightness GaN Vertical Light-Emitting Diodes on Metal Alloy for General Lighting Application

In this paper, we show the many advantages of the GaN-based vertical light-emitting diodes (VLEDs) on metal alloy over conventional LEDs in terms of: better current spreading, vertical current path for low operation voltage, better light extraction, flexible chip size scaling, higher driving current density, faster heat dissipation, and good reliability. The GaN VLED on metal alloy exhibits very good current-voltage behavior with low operated voltage and low serial dynamic resistance. The low operation junction temperature of GaN VLED on metal alloy demonstrates excellent heat dissipation capabilities. Chip size scaling without efficiency loss shows a unique property of GaN VLED on metal alloy. The GaN VLED on metal alloy also enables top surface engineering for efficient light extraction to further light output. A high-power white LED having efficiency of 120 lumen/W was achieved through a combination of reflector, surface engineering, and optimization of the n-GaN layer thickness. Coupled with good reliability and mass production ability, the GaN VLED on metal alloy is very suitable for general lighting application.

[1]  Chia-Feng Lin,et al.  Improving light output power of InGaN-based light emitting diodes with pattern-nanoporous p-type GaN:Mg surfaces , 2008 .

[2]  S.J. Chang,et al.  Nitride-based LEDs with 800/spl deg/C grown p-AlInGaN-GaN double-cap layers , 2004, IEEE Photonics Technology Letters.

[3]  Theodore D. Moustakas,et al.  Growth of GaN by ECR-assisted MBE , 1993 .

[4]  Jacques I. Pankove,et al.  Optical Processes in Semiconductors , 1971 .

[5]  Sadafumi Yoshida,et al.  Epitaxial growth of cubic and hexagonal GaN on GaAs by gas‐source molecular‐beam epitaxy , 1991 .

[6]  R. J. Bell,et al.  Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. , 1985, Applied optics.

[7]  S. Denbaars,et al.  Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening , 2004 .

[8]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[9]  R. W. Christy,et al.  Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd , 1974 .

[10]  Yan-Kuin Su,et al.  InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts , 2003 .

[11]  Theodore D. Moustakas,et al.  Epitaxial growth of zinc blende and wurtzitic gallium nitride thin films on (001) silicon , 1991 .

[12]  E. F. Schubert,et al.  Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates , 2001 .

[13]  L. J. Chen,et al.  Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films , 1999 .

[14]  Robert F. Davis,et al.  Growth of cubic phase gallium nitride by modified molecular‐beam epitaxy , 1989 .

[15]  R. Goldhahn,et al.  Refractive index and gap energy of cubic InxGa1−xN , 2000 .

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  Robert F. Karlicek,et al.  Growth of InGaN/GaN multiple-quantum-well blue light-emitting diodes on silicon by metalorganic vapor phase epitaxy , 1999 .

[18]  O. Heavens Handbook of Optical Constants of Solids II , 1992 .

[19]  Andrew G. Glen,et al.  APPL , 2001 .

[20]  H. Macleod,et al.  Thin-Film Optical Filters , 1969 .

[21]  Hiroyuki Hoshi,et al.  Substrate Nitridation Effects on GaN Grown on GaAs Substrates by Molecular Beam Epitaxy Using RF-Radical Nitrogen Source , 1993 .

[22]  Masashi Mizuta,et al.  Low Temperature Growth of GaN and AlN on GaAs Utilizing Metalorganics and Hydrazine , 1986 .

[23]  Gou-Chung Chi,et al.  Nitride-based near-ultraviolet light emitting diodes with meshed p-GaN , 2007 .

[24]  Henryk Temkin,et al.  HIGH QUALITY GAN GROWN ON SI(111) BY GAS SOURCE MOLECULAR BEAM EPITAXY WITH AMMONIA , 1999 .

[25]  H. Morkoç,et al.  GaN, AlN, and InN: A review , 1992 .

[26]  R. M. Park,et al.  Growth of zinc blende‐GaN on β‐SiC coated (001) Si by molecular beam epitaxy using a radio frequency plasma discharge, nitrogen free‐radical source , 1993 .

[27]  S. Sriram,et al.  4H-SiC MESFET's with 42 GHz f/sub max/ , 1996, IEEE Electron Device Letters.

[28]  Hao-Chung Kuo,et al.  Study of GaN light-emitting diodes fabricated by laser lift-off technique , 2004 .

[29]  Paul S. Martin,et al.  High performance thin-film flip-chip InGaN–GaN light-emitting diodes , 2006 .