High speed quantum gates with cavity quantum electrodynamics

Cavity quantum electrodynamic schemes for quantum gates are amongst the earliest quantum computing proposals. Despite continued progress and the recent demonstration of photon blockade, there are still issues with optimal coupling and gate operation involving high-quality cavities. Here we show that dynamic cavity control allows for scalable cavity-QED based quantum gates using the full cavity bandwidth. This technique allows an order of magnitude increase in operating speed, and two orders reduction in cavity Q, over passive systems. Our method exploits Stark shift-based Q switching, and is ideally suited to solid-state integrated optical approaches to quantum computing

[1]  Andrew D Greentree,et al.  Towards a picosecond transform-limited nitrogen-vacancy based single photon source. , 2007, Optics express.

[2]  J. Raimond,et al.  Quantum Memory with a Single Photon in a Cavity , 1997 .

[3]  Improving single-photon sources with Stark tuning , 2007 .

[4]  Andrew G. Glen,et al.  APPL , 2001 .

[5]  J. Wrachtrup,et al.  Quantum process tomography and Linblad estimation of a solid-state qubit , 2006, quant-ph/0601167.

[6]  R. Feynman Simulating physics with computers , 1999 .

[7]  Dirk Englund,et al.  Controlling cavity reflectivity with a single quantum dot , 2007, Nature.

[8]  T. Spiller,et al.  Quantum computation by communication , 2005, quant-ph/0509202.

[9]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[10]  A. Greentree,et al.  Diamond integrated quantum photonics , 2008 .

[11]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[12]  Timothy C. Ralph,et al.  Frequency and temporal effects in linear optical quantum computing , 2004, Physical Review A.

[13]  Bruce W. Shore,et al.  Theory of Coherent Atomic Excitation , 1991 .

[14]  Kae Nemoto,et al.  Deterministic optical quantum computer using photonic modules , 2008 .

[15]  Jacob M. Taylor,et al.  Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins , 2005 .

[16]  M D Barrett,et al.  Implementation of the Semiclassical Quantum Fourier Transform in a Scalable System , 2005, Science.

[17]  H. J. Kimble,et al.  Deterministic generation of a bit-stream of single-photon pulses , 1997 .

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  Gardiner,et al.  Decoherence, continuous observation, and quantum computing: A cavity QED model. , 1995, Physical review letters.

[20]  T. Asano,et al.  Spontaneous-emission control by photonic crystals and nanocavities , 2007 .

[21]  R. J. Schoelkopf,et al.  Resolving photon number states in a superconducting circuit , 2007, Nature.

[22]  C. Becher,et al.  Design of photonic crystal microcavities in diamond films for quantum information , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[23]  S. Rand,et al.  Origin of persistent hole burning of N–V centers in diamond , 1992 .

[24]  Michal Lipson,et al.  Breaking the delay-bandwidth limit in a photonic structure , 2007 .

[25]  Franco Nori,et al.  Controllable scattering of a single photon inside a one-dimensional resonator waveguide. , 2008, Physical review letters.

[26]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[27]  Simon J. Devitt,et al.  Photonic module: An on-demand resource for photonic entanglement , 2007, 0706.2226.

[28]  P Hemmer,et al.  Stark shift control of single optical centers in diamond. , 2006, Physical Review Letters.

[29]  Hood,et al.  Measurement of conditional phase shifts for quantum logic. , 1995, Physical review letters.

[30]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[31]  F. Schmidt-Kaler,et al.  Realization of the Cirac–Zoller controlled-NOT quantum gate , 2003, Nature.

[32]  M. Steel,et al.  Diamond based photonic crystal microcavities. , 2006, Optics express.

[33]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[34]  H. J. Kimble,et al.  Photon blockade in an optical cavity with one trapped atom , 2005, Nature.

[35]  Steven G. Johnson,et al.  Single-photon all-optical switching using waveguide-cavity quantum electrodynamics , 2006 .

[36]  J. Salzman,et al.  High-Q photonic crystal nanocavities on diamond for quantum electrodynamics , 2007 .

[37]  Takao Aoki,et al.  A Photon Turnstile Dynamically Regulated by One Atom , 2008, Science.

[38]  Andrew D. Greentree,et al.  Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms , 2006 .

[39]  Ronald Hanson,et al.  Fabrication and Characterization of Two-Dimensional Photonic Crystal Microcavities in Nanocrystalline Diamond , 2007 .