CurveLP-A MATLAB implementation of an infeasible interior-point algorithm for linear programming

Mehrotra’s algorithm has been the most successful infeasible interior-point algorithm for linear programming since 1990. Most popular interior-point software packages for linear programming are based on Mehrotra’s algorithm. This paper describes a proposal and implementation of an alternative algorithm, an arc-search infeasible interior-point algorithm. We will demonstrate, by testing Netlib problems and comparing the test results obtained by the arc-search infeasible interior-point algorithm and Mehrotra’s algorithm, that the proposed arc-search infeasible interior-point algorithm is a more reliable and efficient algorithm than Mehrotra’s algorithm.

[1]  T. Banchoff,et al.  Differential Geometry of Curves and Surfaces , 2010 .

[2]  Shinji Mizuno,et al.  On Adaptive-Step Primal-Dual Interior-Point Algorithms for Linear Programming , 1993, Math. Oper. Res..

[3]  C. T. L. S. Ghidini,et al.  Combining a hybrid preconditioner and a optimal adjustment algorithm to accelerate the convergence of interior point methods , 2012 .

[4]  Yaguang Yang A polynomial arc-search interior-point algorithm for convex quadratic programming , 2011, Eur. J. Oper. Res..

[5]  Kees Roos,et al.  A Full-Newton Step O(n) Infeasible Interior-Point Algorithm for Linear Optimization , 2006, SIAM J. Optim..

[6]  E. Andersen Finding all linearly dependent rows in large-scale linear programming , 1995 .

[7]  Stephen J. Wright,et al.  Pcx User Guide Version 1.1 1 , 1997 .

[8]  A. Mahajan,et al.  Presolving Mixed–Integer Linear Programs , 2011 .

[9]  J. Reid,et al.  On the Automatic Scaling of Matrices for Gaussian Elimination , 1972 .

[10]  Makoto Yamashita,et al.  An arc-search $${\mathcal {O}}(nL)$$O(nL) infeasible-interior-point algorithm for linear programming , 2015, Optim. Lett..

[11]  Barry W. Peyton,et al.  Block Sparse Cholesky Algorithms on Advanced Uniprocessor Computers , 1991, SIAM J. Sci. Comput..

[12]  I. Lustig,et al.  Computational experience with a primal-dual interior point method for linear programming , 1991 .

[13]  R. Vanderbei LOQO:an interior point code for quadratic programming , 1999 .

[14]  Gautam Mitra,et al.  Analysis of mathematical programming problems prior to applying the simplex algorithm , 1975, Math. Program..

[15]  Yin Zhang,et al.  Solving large-scale linear programs by interior-point methods under the Matlab ∗ Environment † , 1998 .

[16]  Yaguang Yang,et al.  A Polynomial Arc-Search Interior-Point Algorithm for Linear Programming , 2013, Journal of Optimization Theory and Applications.

[17]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[18]  M. Kojima,et al.  A primal-dual interior point algorithm for linear programming , 1988 .

[19]  C. Cartis Some disadvantages of a Mehrotra-type primal-dual corrector interior point algorithm for linear programming , 2009 .

[20]  Mauricio G. C. Resende,et al.  A Polynomial-Time Primal-Dual Affine Scaling Algorithm for Linear and Convex Quadratic Programming and Its Power Series Extension , 1990, Math. Oper. Res..

[21]  Pierre-Antoine Absil,et al.  Addressing Rank Degeneracy in Constraint-Reduced Interior-Point Methods for Linear Optimization , 2014, J. Optim. Theory Appl..

[22]  Erling D. Andersen,et al.  Presolving in linear programming , 1995, Math. Program..

[23]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[24]  Shinji Mizuno,et al.  A polynomial-time algorithm for a class of linear complementarity problems , 1989, Math. Program..

[25]  A. J. Goldman,et al.  4. Theory of Linear Programming , 1957 .

[26]  Yin Zhang,et al.  On the Convergence of a Class of Infeasible Interior-Point Methods for the Horizontal Linear Complementarity Problem , 1994, SIAM J. Optim..

[27]  Jianming Miao Two Infeasible Interior-Point Predictor-Corrector Algorithms for Linear Programming , 1996, SIAM J. Optim..

[28]  N. Megiddo Pathways to the optimal set in linear programming , 1989 .

[29]  Jiming Peng,et al.  On Mehrotra-Type Predictor-Corrector Algorithms , 2007, SIAM J. Optim..

[30]  N. Gould,et al.  Finding a point in the relative interior of a polyhedron , 2007 .

[31]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[32]  J. Dobes A modified Markowitz criterion for the fast modes of the LU factorization , 2005, 48th Midwest Symposium on Circuits and Systems, 2005..

[33]  Michael A. Saunders,et al.  On projected newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method , 1986, Math. Program..

[34]  Yaguang Yang Arc-Search Infeasible Interior-Point Algorithm for Linear Programming , 2014, 1406.4539.

[35]  A. Tits,et al.  Globally convergent algorithms for robust pole assignment by state feedback , 1996, IEEE Trans. Autom. Control..

[36]  Stephen J. Wright,et al.  PCx user guide , 1997 .

[37]  Behrouz Kheirfam,et al.  A modified Full-Newton Step Infeasible interior-Point Algorithm for Linear Optimization , 2013, Asia Pac. J. Oper. Res..

[38]  S. Mizuno Polynomiality of the Kojima-Megiddo-Mizuno Infeasible Interior Point Algorithm for Linear Programming , 1992 .

[39]  Joseph W. H. Liu,et al.  Modification of the minimum-degree algorithm by multiple elimination , 1985, TOMS.

[40]  Roy E. Marsten,et al.  On Implementing Mehrotra's Predictor-Corrector Interior-Point Method for Linear Programming , 1992, SIAM J. Optim..

[41]  Yinyu Ye,et al.  A primal-dual interior point method whose running time depends only on the constraint matrix , 1996, Math. Program..

[42]  Shinji Mizuno,et al.  Polynomiality of infeasible-interior-point algorithms for linear programming , 1994, Math. Program..

[43]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[44]  Kees Roos,et al.  Degeneracy in interior point methods for linear programming: a survey , 1993, Ann. Oper. Res..