Gene order and chromosome dynamics coordinate spatiotemporal gene expression during the bacterial growth cycle

In Escherichia coli crosstalk between DNA supercoiling, nucleoid-associated proteins and major RNA polymerase σ initiation factors regulates growth phase-dependent gene transcription. We show that the highly conserved spatial ordering of relevant genes along the chromosomal replichores largely corresponds both to their temporal expression patterns during growth and to an inferred gradient of DNA superhelical density from the origin to the terminus. Genes implicated in similar functions are related mainly in trans across the chromosomal replichores, whereas DNA-binding transcriptional regulators interact predominantly with targets in cis along the replichores. We also demonstrate that macrodomains (the individual structural partitions of the chromosome) are regulated differently. We infer that spatial and temporal variation of DNA superhelicity during the growth cycle coordinates oxygen and nutrient availability with global chromosome structure, thus providing a mechanistic insight into how the organization of a complete bacterial chromosome encodes a spatiotemporal program integrating DNA replication and global gene expression.

[1]  N R Cozzarelli,et al.  Topoisomerase IV, not gyrase, decatenates products of site-specific recombination in Escherichia coli. , 1997, Genes & development.

[2]  Javier Arsuaga,et al.  Genomic transcriptional response to loss of chromosomal supercoiling in Escherichia coli , 2004, Genome Biology.

[3]  A. Kolb,et al.  DNA supercoiling contributes to disconnect sigmaS accumulation from sigmaS-dependent transcription in Escherichia coli. , 2003, Molecular microbiology.

[4]  Abha Choudhary,et al.  TraR, a Homolog of a RNAP Secondary Channel Interactor, Modulates Transcription , 2009, PLoS genetics.

[5]  C. Kurland,et al.  Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. , 1996, Journal of molecular biology.

[6]  A. Ishihama,et al.  Fundamental structural units of the Escherichia coli nucleoid revealed by atomic force microscopy. , 2004, Nucleic acids research.

[7]  A. Ishihama,et al.  Dynamic state of DNA topology is essential for genome condensation in bacteria , 2006, The EMBO journal.

[8]  S. Adhya,et al.  Spiral structure of Escherichia coli HUαβ provides foundation for DNA supercoiling , 2007, Proceedings of the National Academy of Sciences.

[9]  Mark Rochman,et al.  Promoter protection by a transcription factor acting as a local topological homeostat , 2002, EMBO reports.

[10]  Marc-Thorsten Hütt,et al.  Analog regulation of metabolic demand , 2011, BMC Systems Biology.

[11]  L. Claret,et al.  Variation in HU composition during growth of Escherichia coli: the heterodimer is required for long term survival. , 1997, Journal of molecular biology.

[12]  L. Claret,et al.  Regulation of HUα and HUβ by CRP and FIS inEscherichia coli , 1996 .

[13]  J. Gralla,et al.  Changes in the linking number of supercoiled DNA accompany growth transitions in Escherichia coli , 1987, Journal of bacteriology.

[14]  Bruno Bassetti,et al.  Gene clusters reflecting macrodomain structure respond to nucleoid perturbations. , 2010, Molecular bioSystems.

[15]  A. J. Martin-Galiano,et al.  The genome of Streptococcus pneumoniae is organized in topology-reacting gene clusters , 2010, Nucleic acids research.

[16]  A. Kornberg,et al.  Purified dnaA protein in initiation of replication at the Escherichia coli chromosomal origin of replication. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[17]  C. Gualerzi,et al.  Antagonistic involvement of FIS and H‐NS proteins in the transcriptional control of hns expression , 1996, Molecular microbiology.

[18]  R. T. Dame,et al.  The role of nucleoid‐associated proteins in the organization and compaction of bacterial chromatin , 2005, Molecular microbiology.

[19]  B. Sclavi,et al.  DnaA‐ATP acts as a molecular switch to control levels of ribonucleotide reductase expression in Escherichia coli , 2010, Molecular microbiology.

[20]  T. Elliott,et al.  Fis Regulates Transcriptional Induction of RpoS in Salmonella enterica , 2005, Journal of bacteriology.

[21]  D. Jin,et al.  The rpoB mutants destabilizing initiation complexes at stringently controlled promoters behave like "stringent" RNA polymerases in Escherichia coli. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Marcel Geertz,et al.  Homeostatic regulation of supercoiling sensitivity coordinates transcription of the bacterial genome , 2006, EMBO reports.

[23]  R. D'ari,et al.  Antagonistic Regulation of Escherichia coli Ribosomal RNA rrnB P1 Promoter Activity by GreA and DksA* , 2006, Journal of Biological Chemistry.

[24]  Barry L. Wanner,et al.  Analysis of Promoter Targets for Escherichia coli Transcription Elongation Factor GreA In Vivo and In Vitro , 2007, Journal of bacteriology.

[25]  R. Wagner,et al.  Effects of the Escherichia coli DNA‐binding protein H‐NS on rRNA synthesis in vivo , 1998, Molecular microbiology.

[26]  O. Sliusarenko,et al.  Spatial organization of the flow of genetic information in bacteria , 2010, Nature.

[27]  D. Beier,et al.  Expression of variant nuclearArabidopsis tRNASer genes and pre-tRNA maturation differ in HeLa, yeast and wheat germ extracts , 1992, Molecular and General Genetics MGG.

[28]  A. Kolb,et al.  DNA supercoiling contributes to disconnect σS accumulation from σS‐dependent transcription in Escherichia coli , 2003 .

[29]  S. Altuvia,et al.  Differential regulation of Escherichia coli topoisomerase I by Fis , 2007, Molecular microbiology.

[30]  Marcel Geertz,et al.  General organisational principles of the transcriptional regulation system: a tree or a circle? , 2010, Molecular bioSystems.

[31]  A. Travers,et al.  RNA polymerase and an activator form discrete subcomplexes in a transcription initiation complex , 2006, The EMBO journal.

[32]  Byung-Kwan Cho,et al.  RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media , 2010, Proceedings of the National Academy of Sciences.

[33]  H. Choy,et al.  DNA looping-mediated repression by histone-like protein H-NS: specific requirement of Esigma70 as a cofactor for looping. , 2005, Genes & development.

[34]  Svetlana Alexeeva,et al.  Requirement of ArcA for Redox Regulation in Escherichia coli under Microaerobic but Not Anaerobic or Aerobic Conditions , 2003, Journal of bacteriology.

[35]  Arkady B Khodursky,et al.  Spatial patterns of transcriptional activity in the chromosome of Escherichia coli , 2004, Genome Biology.

[36]  A. Khodursky,et al.  Adaptation to famine: A family of stationary-phase genes revealed by microarray analysis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[37]  D. Sherratt,et al.  Spatial and temporal organization of replicating Escherichia coli chromosomes , 2003, Molecular microbiology.

[38]  S. Hiraga,et al.  Dynamic events of sister chromosomes in the cell cycle of Escherichia coli , 2008, Genes to cells : devoted to molecular & cellular mechanisms.

[39]  S. Adhya,et al.  Spiral structure of Escherichia coli HUalphabeta provides foundation for DNA supercoiling. , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Andrew Travers,et al.  DNA supercoiling — a global transcriptional regulator for enterobacterial growth? , 2005, Nature Reviews Microbiology.

[41]  C. Ball,et al.  Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli , 1992, Journal of bacteriology.

[42]  H. Westerhoff,et al.  DNA supercoiling depends on the phosphorylation potential in Escherichia coli , 1996, Molecular microbiology.

[43]  John W. Foster,et al.  DksA A Critical Component of the Transcription Initiation Machinery that Potentiates the Regulation of rRNA Promoters by ppGpp and the Initiating NTP , 2004, Cell.

[44]  R. Gourse,et al.  Effects of DksA, GreA, and GreB on transcription initiation: insights into the mechanisms of factors that bind in the secondary channel of RNA polymerase. , 2007, Journal of molecular biology.

[45]  Peter F. Hallin,et al.  Parallel genetic and phenotypic evolution of DNA superhelicity in experimental populations of Escherichia coli. , 2010, Molecular biology and evolution.

[46]  A. Travers,et al.  Structural Coupling between RNA Polymerase Composition and DNA Supercoiling in Coordinating Transcription: a Global Role for the Omega Subunit? , 2011, mBio.

[47]  C. Condon,et al.  rRNA operon multiplicity in Escherichia coli and the physiological implications of rrn inactivation , 1995, Journal of bacteriology.

[48]  S. Busby,et al.  Selective repression by Fis and H‐NS at the Escherichia coli dps promoter , 2008, Molecular microbiology.

[49]  A. Khodursky,et al.  Roles of Topoisomerases in Maintaining Steady-state DNA Supercoiling in Escherichia coli * , 2000, The Journal of Biological Chemistry.

[50]  A. Kolb,et al.  Physiological Effects of Crl in Salmonella Are Modulated by σS Level and Promoter Specificity , 2007, Journal of bacteriology.

[51]  Feng Gao,et al.  DoriC: a database of oriC regions in bacterial genomes , 2007, Bioinform..

[52]  A. Travers,et al.  A DNA architectural protein couples cellular physiology and DNA topology in Escherichia coli , 1999, Molecular microbiology.

[53]  L. Hsieh,et al.  Bacterial DNA supercoiling and [ATP]/[ADP]. Changes associated with a transition to anaerobic growth. , 1991, Journal of molecular biology.

[54]  Ka-Yiu San,et al.  Effect of oxygen on the Escherichia coli ArcA and FNR regulation systems and metabolic responses. , 2005, Biotechnology and bioengineering.

[55]  A. Ishihama Functional modulation of Escherichia coli RNA polymerase. , 2000, Annual review of microbiology.

[56]  F. Colland,et al.  σ factor selectivity of Escherichia coli RNA polymerase: role for CRP, IHF and Lrp transcription factors , 2000, The EMBO journal.

[57]  Andrew Travers,et al.  Pervasive regulation of nucleoid structure and function by nucleoid-associated proteins. , 2011, Current opinion in microbiology.

[58]  C. Gualerzi,et al.  Lethal overproduction of the Escherichia coli nucleoid protein H-NS: ultramicroscopic and molecular autopsy , 2004, Molecular and General Genetics MGG.

[59]  S. Ueda,et al.  Growth Phase-Dependent Variation in Protein Composition of the Escherichia coli Nucleoid , 1999, Journal of bacteriology.

[60]  A. Travers,et al.  Coordination of genomic structure and transcription by the main bacterial nucleoid‐associated protein HU , 2010, EMBO reports.

[61]  C. Dorman H-NS: a universal regulator for a dynamic genome , 2004, Nature Reviews Microbiology.

[62]  Paul A. Wiggins,et al.  Strong intranucleoid interactions organize the Escherichia coli chromosome into a nucleoid filament , 2010, Proceedings of the National Academy of Sciences.

[63]  S. Adhya,et al.  Nucleoid remodeling by an altered HU protein: reorganization of the transcription program. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[64]  C. D. Hardy,et al.  A genetic selection for supercoiling mutants of Escherichia coli reveals proteins implicated in chromosome structure , 2005, Molecular microbiology.

[65]  A. Ishihama,et al.  A stationary phase protein in Escherichia coli with binding activity to the major sigma subunit of RNA polymerase. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[66]  H. Schellhorn,et al.  Control of RpoS in global gene expression of Escherichia coli in minimal media , 2008, Molecular Genetics and Genomics.

[67]  Regine Hengge,et al.  A two-component phosphotransfer network involving ArcB, ArcA, and RssB coordinates synthesis and proteolysis of sigmaS (RpoS) in E. coli. , 2005, Genes & development.

[68]  J. E. Cabrera,et al.  The distribution of RNA polymerase in Escherichia coli is dynamic and sensitive to environmental cues , 2003, Molecular microbiology.

[69]  Julio Collado-Vides,et al.  RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation , 2007, Nucleic Acids Res..

[70]  M. Rossignol,et al.  Macrodomain organization of the Escherichia coli chromosome , 2004, The EMBO journal.

[71]  The gyr genes of Salmonella enterica serovar Typhimurium are repressed by the factor for inversion stimulation, Fis , 2003, Molecular Genetics and Genomics.

[72]  Tomoko Kubori,et al.  A pathway branching in transcription initiation in Escherichia coli , 2006, Molecular microbiology.

[73]  G. Muskhelishvili,et al.  A systematic in vitro study of nucleoprotein complexes formed by bacterial nucleoid-associated proteins revealing novel types of DNA organization. , 2009, Journal of molecular biology.

[74]  Marc-Thorsten Hütt,et al.  Dissecting the logical types of network control in gene expression profiles , 2008, BMC Systems Biology.

[75]  R. Gourse,et al.  Direct regulation of Escherichia coli ribosomal protein promoters by the transcription factors ppGpp and DksA , 2011, Proceedings of the National Academy of Sciences.

[76]  S. Wolf,et al.  Nucleoid restructuring in stationary‐state bacteria , 2004, Molecular microbiology.