Design of functional nanostructured materials using supercritical fluids

Abstract This paper describes how the specific properties of supercritical fluids have been exploited in the last 5 years for synthesizing functional nanostructured materials, especially in the field of inorganic and hybrid materials. It is shown that control of the physicochemical properties of nanomaterials (size, morphology, structure and composition) as “nanobricks” is achieved by choosing specific operating parameters. Next, the structure formation of these “nanobricks” is discussed in order to design advanced nanostructured materials. This is illustrated with the design of nanorods, nanowires, conformational films, core–shell structure, supported nanoparticles, polymer impregnation with nanoparticles and organic coating of particles. The associated properties for applications in many interesting fields, such as catalysis, electronics, energy, optics, etc. are reported.

[1]  S. Oyama,et al.  The Chemistry of Transition Metal Carbides and Nitrides , 1996 .

[2]  I. Abdulagatov,et al.  (p, v, T, x) Measurements of {(1 − x)H2O + xC2H5OH} mixtures in the near-critical and supercritical regions , 2007 .

[3]  K. Byrappa,et al.  Supercritical hydrothermal synthesis of organic-inorganic hybrid nanoparticles , 2006 .

[4]  B. Korgel,et al.  High Yield Multiwall Carbon Nanotube Synthesis in Supercritical Fluids , 2006 .

[5]  The formation of ordered bismuth nanowire arrays within mesoporous silica templates , 2007 .

[6]  Kirk J. Ziegler,et al.  Synthesis of organic monolayer-stabilized copper nanocrystals in supercritical water. , 2001, Journal of the American Chemical Society.

[7]  Ananth Dodabalapur,et al.  Germanium nanowire transistors with ethylene glycol treated poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) contacts , 2007 .

[8]  S. Marre,et al.  Tailor-made surface properties of particles with a hydrophilic or hydrophobic polymer shell mediated by supercritical CO2. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[9]  B. Korgel,et al.  Nanocrystal-mediated crystallization of silicon and germanium nanowires in organic solvents: the role of catalysis and solid-phase seeding. , 2006, Angewandte Chemie.

[10]  M. Umetsu,et al.  Supercritical Hydrothermal Synthesis of Nanoparticles , 2004 .

[11]  B. Korgel,et al.  Silicon Nanowires and Silica Nanotubes Seeded by Copper Nanoparticles in an Organic Solvent , 2008 .

[12]  S. Marre,et al.  Processes Using Supercritical Fluids: A Sustainable Approach for the Design of Functional Nanomaterials , 2007 .

[13]  P. Weisbecker,et al.  General approach for the synthesis of organic-inorganic hybrid nanoparticles mediated by supercritical CO2. , 2007, Journal of the American Chemical Society.

[14]  S. Miao,et al.  Highly Efficient Nanocatalysts Supported on Hollow Polymer Nanospheres: Synthesis, Characterization, and Applications , 2008 .

[15]  K. Arai,et al.  Hydrothermal Synthesis of Metal Oxide Nanoparticles at Supercritical Conditions , 2000 .

[16]  Tadafumi Adschiri,et al.  Hydrothermal technology for nanotechnology , 2007 .

[17]  J. Watkins,et al.  Reactive Deposition of Conformal Metal Oxide Films from Supercritical Carbon Dioxide , 2007 .

[18]  Yong Wang,et al.  Polypropylene/Silica Nanocomposites Prepared by in-Situ Sol−Gel Reaction with the Aid of CO2 , 2005 .

[19]  B. Gorman,et al.  Mesoporous Silica Films with Long-Range Order Prepared from Strongly Segregated Block Copolymer/Homopolymer Blend Templates , 2007 .

[20]  J. Watkins,et al.  Fabrication of Device Nanostructures Using Supercritical Fluids , 2005 .

[21]  Cyril Aymonier,et al.  Review of supercritical fluids in inorganic materials science , 2006 .

[22]  S. Marre,et al.  Design at the nanometre scale of multifunctional materials using supercritical fluid chemical deposition , 2006, Nanotechnology.

[23]  J. Holmes,et al.  A Supercritical‐Fluid Method for Growing Carbon Nanotubes , 2007 .

[24]  S. Miao,et al.  Coating carbon nanotubes with metal oxides in a supercritical carbon dioxide–ethanol solution , 2007 .

[25]  S. Miao,et al.  Fabrication of 3D-networks of native starch and their application to produce porous inorganic oxide networks through a supercritical route , 2008 .

[26]  C. Erkey,et al.  Preparation and characterization of ruthenium/carbon aerogel nanocomposites via a supercritical fluid route. , 2005, The journal of physical chemistry. B.

[27]  Qianwang Chen,et al.  Synthesis of carbon nanotubes by reduction of carbon dioxide with metallic lithium , 2003 .

[28]  H. Reveron,et al.  Continuous supercritical synthesis and dielectric behaviour of the whole BST solid solution. , 2006, Nanotechnology.

[29]  C. Aymonier,et al.  Dendritic Core−Shell Macromolecules Soluble in Supercritical Carbon Dioxide , 2006 .

[30]  S. Marre,et al.  Kinetically Controlled Formation of Supported Nanoparticles in Low Temperature Supercritical Media for the Development of Advanced Nanostructured Materials , 2009 .

[31]  B. Korgel,et al.  Importance of Solvent-Mediated Phenylsilane Decompositon Kinetics for High-Yield Solution-Phase Silicon Nanowire Synthesis , 2008 .

[32]  S. Gorsse,et al.  Synthesis of nanostructured materials in supercritical ammonia: nitrides, metals and oxides , 2004 .

[33]  E. Akiba,et al.  Particle decoration in super critical fluid to improve the hydrogen sorption cyclability of magnesium , 2007 .

[34]  J. Watkins,et al.  Synthesis of Mesoporous Organosilicate Films in Supercritical Carbon Dioxide , 2006 .

[35]  Ying Zhang,et al.  Thermodynamics and kinetics of adsorption of bis(2,2,6,6-tetramethyl-3,5-heptanedionato) (1,5-cyclooctadiene) ruthenium (II) on carbon aerogel from supercritical CO2 solution , 2008 .

[36]  Can Erkey,et al.  Preparation of supported metallic nanoparticles using supercritical fluids: A review , 2006 .

[37]  C. Aymonier,et al.  Monodisperse model to predict the growth of inorganic nanostructured particles in supercritical fluids through a coalescence and aggregation mechanism , 2009 .

[38]  Ernesto Reverchon,et al.  Nanomaterials and supercritical fluids , 2006 .

[39]  P. Blood,et al.  Synthesis of nanoparticulate yttrium aluminum garnet in supercritical water–ethanol mixtures , 2007 .

[40]  C. Aymonier,et al.  Preparation of functional hybrid palladium nanoparticles using supercritical fluids: a novel approach to detach the growth and functionalization steps. , 2008, Chemical communications.

[41]  H. R. Kunz,et al.  Preparation via supercritical fluid route of Pd-impregnated nafion membranes which exhibit reduced methanol crossover for DMFC , 2005 .

[42]  S. Miao,et al.  Decoration carbon nanotubes with Pd and Ru nanocrystals via an inorganic reaction route in supercritical carbon dioxide-methanol solution. , 2006, Journal of colloid and interface science.

[43]  J. Watkins,et al.  Reactive Deposition of Conformal Ruthenium Films from Supercritical Carbon Dioxide , 2006 .

[44]  Y. Ikushima,et al.  In situ Synthesis of Gold Nanoparticles inside the Pores of MCM‐48 in Supercritical Carbon Dioxide and its Catalytic Application , 2006 .

[45]  B. Iversen,et al.  Reactor design for in situ X-ray scattering studies of nanoparticle formation in supercritical water syntheses , 2008 .

[46]  C. Aymonier,et al.  Review on materials science and supercritical fluids , 2003 .

[47]  C. Bousquet,et al.  Tuning Al2O3 crystallinity under supercritical fluid conditions: Effect on sintering , 2008 .

[48]  M. Shariaty-Niassar,et al.  Effect of titanium dioxide solubility on the formation of BaTiO3 nanoparticles in supercritical water , 2007 .

[49]  James E Hutchison,et al.  Toward greener nanosynthesis. , 2007, Chemical reviews.

[50]  Rudi P. Nielsen,et al.  In situ high-energy synchrotron radiation study of sol-gel nanoparticle formation in supercritical fluids. , 2007, Angewandte Chemie.

[51]  D. Lyons,et al.  Supercritical fluid synthesis of metal and semiconductor nanomaterials. , 2003, Chemistry.

[52]  Weize Wu,et al.  Replication of biological organizations through a supercritical fluid route. , 2005, Chemical communications.

[53]  H. Reveron,et al.  Single-step synthesis of well-crystallized and pure barium titanate nanoparticles in supercritical fluids , 2005 .