Hypoxia-driven cell motility reflects the interplay between JMY and HIF-1α

[1]  A. Harris,et al.  Effects of HIF-1α and HIF2α on Growth and Metabolism of Clear-Cell Renal Cell Carcinoma 786-0 Xenografts , 2010, Journal of oncology.

[2]  G. Semenza Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics , 2010, Oncogene.

[3]  R. Shoemaker,et al.  Antiangiogenic agents and HIF-1 inhibitors meet at the crossroads , 2009, Cell cycle.

[4]  N. L. La Thangue,et al.  A transcription co-factor integrates cell adhesion and motility with the p53 response , 2009, Proceedings of the National Academy of Sciences.

[5]  J. Zuchero,et al.  p53-cofactor JMY is a Multifunctional Actin Nucleation Factor , 2009, Nature Cell Biology.

[6]  M. Jansson,et al.  Arginine methylation regulates the p53 response , 2008, Nature Cell Biology.

[7]  W. Kaelin,et al.  Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. , 2008, Molecular cell.

[8]  E. Rankin,et al.  The role of hypoxia-inducible factors in tumorigenesis , 2008, Cell Death and Differentiation.

[9]  N. L. La Thangue,et al.  DNA‐damage response control of E2F7 and E2F8 , 2008, EMBO reports.

[10]  Wen Shi,et al.  Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. , 2007, Cancer research.

[11]  Charles H. Graham,et al.  Hypoxia-driven selection of the metastatic phenotype , 2007, Cancer and Metastasis Reviews.

[12]  Young-Soo Hong,et al.  (Aryloxyacetylamino)benzoic acid analogues: A new class of hypoxia-inducible factor-1 inhibitors. , 2007, Journal of medicinal chemistry.

[13]  F. Spinella,et al.  Endothelin-1 and Endothelin-3 Promote Invasive Behavior via Hypoxia-Inducible Factor-1α in Human Melanoma Cells , 2007 .

[14]  N. L. La Thangue,et al.  Mdm2 targets the p53 transcription cofactor JMY for degradation , 2007, EMBO reports.

[15]  Quynh-Thu Le,et al.  Lysyl oxidase is essential for hypoxia-induced metastasis , 2006, Nature.

[16]  G. Wahl,et al.  Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4 , 2006, Cell Death and Differentiation.

[17]  G. Semenza,et al.  Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. , 2006, Cancer research.

[18]  J. Cummins,et al.  Hypoxia-inducible factor-1alpha promotes nonhypoxia-mediated proliferation in colon cancer cells and xenografts. , 2006, Cancer research.

[19]  Napoleone Ferrara,et al.  Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. , 2005, Biochemical and biophysical research communications.

[20]  M. Krstic-Demonacos,et al.  Acetylation control of the retinoblastoma tumour-suppressor protein , 2001, Nature Cell Biology.

[21]  M. Krstic-Demonacos,et al.  A TPR motif cofactor contributes to p300 activity in the p53 response. , 2001, Molecular cell.

[22]  N. Shikama,et al.  A novel cofactor for p300 that regulates the p53 response. , 1999, Molecular cell.

[23]  G. Semenza,et al.  Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[24]  G. Semenza,et al.  Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. , 1993, Blood.

[25]  F. Spinella,et al.  Endothelin-1 and endothelin-3 promote invasive behavior via hypoxia-inducible factor-1alpha in human melanoma cells. , 2007, Cancer research.

[26]  Adrian L. Harris,et al.  Hypoxia — a key regulatory factor in tumour growth , 2002, Nature Reviews Cancer.