The Rooster and the Butterflies

This paper describes a machine-checked proof of the Jordan-Holder theorem for finite groups. This purpose of this description is to discuss the representation of the elementary concepts of finite group theory inside type theory. The design choices underlying these representations were crucial to the successful formalization of a complete proof of the Odd Order Theorem with the Coq system.

[1]  Enrico Tassi,et al.  A Modular Formalisation of Finite Group Theory , 2007, TPHOLs.

[2]  R. Ansorge Abhandlungen aus dem mathematischen seminar der Universität Hamburg , 1977 .

[3]  M. Laudet,et al.  Symposium on Automatic Demonstration , 1970 .

[4]  François Garillot,et al.  Generic Proof Tools and Finite Group Theory , 2011 .

[5]  Michael Hedberg,et al.  A coherence theorem for Martin-Löf's type theory , 1998, Journal of Functional Programming.

[6]  Assia Mahboubi,et al.  An introduction to small scale reflection in Coq , 2010, J. Formaliz. Reason..

[7]  Jeremy Avigad,et al.  A Machine-Checked Proof of the Odd Order Theorem , 2013, ITP.

[8]  H. Kurzweil,et al.  The theory of finite groups : an introduction , 2004 .

[9]  O. Hölder Zurückführung einer beliebigen algebraischen Gleichung auf eine Kette von Gleichungen , 1889 .

[10]  Jaap van Oosten,et al.  The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. http: //homotopytypetheory.org/book, Institute for Advanced Study, 2013, vii + 583 pp , 2014, Bulletin of Symbolic Logic.

[11]  David Aspinall,et al.  Formalising Java's Data Race Free Guarantee , 2007, TPHOLs.

[12]  G. Glauberman,et al.  Local Analysis for the Odd Order Theorem: Maximal Subgroups , 1995 .

[13]  P. Aczel,et al.  Homotopy Type Theory: Univalent Foundations of Mathematics , 2013 .

[14]  Pierre Castéran,et al.  Interactive Theorem Proving and Program Development , 2004, Texts in Theoretical Computer Science An EATCS Series.

[15]  Vladimir Voevodsky,et al.  Univalent Foundations of Mathematics , 2011, WoLLIC.

[16]  W. Feit,et al.  SOLVABILITY OF GROUPS OF ODD ORDER , 2012 .

[17]  Yves Bertot,et al.  Interactive Theorem Proving and Program Development: Coq'Art The Calculus of Inductive Constructions , 2010 .

[18]  T. Peterfalvi Character theory for the odd order theorem , 2000 .

[19]  Enrico Tassi,et al.  Canonical Structures for the Working Coq User , 2013, ITP.

[20]  Enrico Tassi,et al.  A Small Scale Reflection Extension for the Coq system , 2008 .

[21]  Georges Gonthier Point-Free, Set-Free Concrete Linear Algebra , 2011, ITP.

[22]  Freek Wiedijk,et al.  The De Bruijn Factor , 2000 .

[23]  M. C. Jordan Traite des substitutions et des equations algebriques , 1870 .

[24]  Michael Aschbacher,et al.  Finite Group Theory , 1994 .

[25]  Hans Zassenhaus,et al.  Zum satz von jordan-hölder-schreier , 1934 .

[26]  de Ng Dick Bruijn,et al.  The mathematical language AUTOMATH, its usage, and some of its extensions , 1970 .

[27]  Ioana Pasca,et al.  Canonical Big Operators , 2008, TPHOLs.

[28]  D. Passman,et al.  Character Theory of Finite Groups , 2010 .