Finite Markov chain analysis of classical differential evolution algorithm

Theoretical analyses of algorithms are important to understand their search behaviors and develop more efficient algorithms. Compared with the plethora of works concerning the empirical study of the differential evolution (DE), little theoretical research has been done to investigate the convergence properties of DE so far. This paper focuses on theoretical researches on the convergence of DE and presents a convergent DE algorithm. First of all, it is proved that the classical DE cannot converge to the global optimal set with probability 1 by using the property that it cannot escape from a local optimal set. Inspired by the characteristics of the elitist genetic algorithm, this paper proposed a modified DE to overcome the disadvantage. The proposed algorithm employs two operators that assist it in escaping from a local optimal set and enhance the diversity of the population. And it is then verified that the proposed algorithm is capable of converging to global optima with probability 1. The theoretical research of this paper is undertaken in a finite discrete set, and the analysis tool used is the Markov chain. The numerical experiments are conducted on a deceptive function and a set of benchmark functions. The experimental results support the theoretical analyses on the convergence performances of the classical and modified DE algorithm.

[1]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[2]  Amit Konar,et al.  Differential Evolution Using a Neighborhood-Based Mutation Operator , 2009, IEEE Transactions on Evolutionary Computation.

[3]  David E. Goldberg,et al.  Finite Markov Chain Analysis of Genetic Algorithms , 1987, ICGA.

[4]  Günter Rudolph,et al.  Convergence analysis of canonical genetic algorithms , 1994, IEEE Trans. Neural Networks.

[5]  Ivanoe De Falco,et al.  Differential Evolution as a viable tool for satellite image registration , 2008, Appl. Soft Comput..

[6]  Robert M. Burton Pointwise properties of convergence in probability , 1985 .

[7]  Jia-Sheng Heh,et al.  A 2-Opt based differential evolution for global optimization , 2010, Appl. Soft Comput..

[8]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[9]  Janez Brest,et al.  Population size reduction for the differential evolution algorithm , 2008, Applied Intelligence.

[10]  Ville Tirronen,et al.  A study on scale factor in distributed differential evolution , 2011, Inf. Sci..

[11]  Rainer Storn,et al.  Minimizing the real functions of the ICEC'96 contest by differential evolution , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[12]  Ville Tirronen,et al.  Scale factor local search in differential evolution , 2009, Memetic Comput..

[13]  Joe Suzuki,et al.  A Markov chain analysis on simple genetic algorithms , 1995, IEEE Trans. Syst. Man Cybern..

[14]  Cajo J. F. ter Braak,et al.  A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces , 2006, Stat. Comput..

[15]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[16]  David Naso,et al.  Compact Differential Evolution , 2011, IEEE Transactions on Evolutionary Computation.

[17]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[18]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[19]  L. G. van Willigenburg,et al.  Efficient Differential Evolution algorithms for multimodal optimal control problems , 2003, Appl. Soft Comput..

[20]  Shengwu Xiong,et al.  Self-adaptive Hybrid differential evolution with simulated annealing algorithm for numerical optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[21]  Ville Tirronen,et al.  Recent advances in differential evolution: a survey and experimental analysis , 2010, Artificial Intelligence Review.

[22]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[23]  David B. Fogel,et al.  Evolutionary Computation: A New Transactions , 1997, IEEE Trans. Evol. Comput..

[24]  Hitoshi Iba,et al.  Accelerating Differential Evolution Using an Adaptive Local Search , 2008, IEEE Transactions on Evolutionary Computation.

[25]  Willem Albers Rank tests for regression and k-sample rank tests under random censorship , 1988 .

[26]  Ponnuthurai N. Suganthan,et al.  Guest Editorial Special Issue on Differential Evolution , 2011, IEEE Transactions on Evolutionary Computation.

[27]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[28]  J. Doob Stochastic processes , 1953 .

[29]  Dimitris K. Tasoulis,et al.  Enhancing Differential Evolution Utilizing Proximity-Based Mutation Operators , 2011, IEEE Transactions on Evolutionary Computation.

[30]  Jouni Lampinen,et al.  A Trigonometric Mutation Operation to Differential Evolution , 2003, J. Glob. Optim..

[31]  Constantinos S. Hilas,et al.  A comparative study of common and self-adaptive differential evolution strategies on numerical benchmark problems , 2011, WCIT.

[32]  Xuesong Wang,et al.  On the use of differential evolution for forward kinematics of parallel manipulators , 2008, Appl. Math. Comput..

[33]  Arthur C. Sanderson,et al.  Modeling and convergence analysis of a continuous multi-objective differential evolution algorithm , 2005, 2005 IEEE Congress on Evolutionary Computation.

[34]  Qingfu Zhang,et al.  Differential Evolution With Composite Trial Vector Generation Strategies and Control Parameters , 2011, IEEE Transactions on Evolutionary Computation.

[35]  Qing Ling,et al.  A Differential Evolution with Simulated Annealing Updating Method , 2006, 2006 International Conference on Machine Learning and Cybernetics.

[36]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[37]  Pascal Bouvry,et al.  Improving Classical and Decentralized Differential Evolution With New Mutation Operator and Population Topologies , 2011, IEEE Transactions on Evolutionary Computation.

[38]  W. Pedrycz,et al.  Machine Learning and Cybernetics , 2014, Communications in Computer and Information Science.

[39]  Yiu-Ming Cheung,et al.  On Convergence Rate of a Class of Genetic Algorithms , 2006, 2006 World Automation Congress.

[40]  Xu Zong Almost Sure Convergence of Genetic Algorithms:A Martingale Approach , 2002 .