Barcodes and area-preserving homeomorphisms
暂无分享,去创建一个
[1] Benjamin Weiss,et al. Topological groups with Rokhlin properties , 2008 .
[2] Masaki Kashiwara,et al. Persistent homology and microlocal sheaf theory , 2017, J. Appl. Comput. Topol..
[3] A. Oancea. A survey of Floer homology for manifolds with contact type boundary or symplectic homology , 2004, Ensaios Matemáticos.
[4] P. Py,et al. On Continuity of Quasimorphisms for Symplectic Maps , 2012 .
[5] Benjamin Weiss,et al. The topological Rohlin property and topological entropy , 2001 .
[6] Nancy Hingston. Subharmonic solutions of Hamiltonian equations on tori , 2009 .
[7] L. Polterovich,et al. Topological Persistence in Geometry and Analysis , 2019, University Lecture Series.
[8] S. M. Ulam,et al. Measure-Preserving Homeomorphisms and Metrical Transitivity , 1941 .
[9] David Cohen-Steiner,et al. Stability of Persistence Diagrams , 2007, Discret. Comput. Geom..
[10] THE GROUP OF HAMILTONIAN HOMEOMORPHISMS AND C 0 -SYMPLECTIC TOPOLOGY , 2004, math/0402210.
[11] Michael Usher. THE SHARP ENERGY-CAPACITY INEQUALITY , 2008, 0808.1592.
[12] C. Conley. Isolated Invariant Sets and the Morse Index , 1978 .
[13] S. A. Barannikov,et al. The framed Morse complex and its invariants , 1994 .
[14] SOLUTIONS OF THE COHOMOLOGICAL EQUATION FOR AREA-PRESERVING FLOWS ON COMPACT SURFACES OF HIGHER GENUS , 1997 .
[15] A. Floer. WITTEN'S COMPLEX AND INFINITE DIMENSIONAL MORSE THEORY , 1989 .
[16] Basak Z. Gurel,et al. Local Floer Homology and the Action Gap , 2007, 0709.4077.
[17] J. Gambaudo,et al. Commutators and diffeomorphisms of surfaces , 2004, Ergodic Theory and Dynamical Systems.
[18] Dusa McDuff,et al. The geometry of symplectic energy , 1993 .
[19] B. Schmitt. L'espace des homeomorphismes du plan qui admettent un seul point fixe d'indice donne est connexe par arcs , 1979 .
[20] M. Bonino. A dynamical property for planar homeomorphisms and an application to the problem of canonical position around an isolated fixed point , 2001 .
[21] Afra Zomorodian,et al. Computing Persistent Homology , 2005, Discret. Comput. Geom..
[22] Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds , 2004, math/0405064.
[23] R. Ho. Algebraic Topology , 2022 .
[24] F. Roux. Homéomorphismes de surfaces théorèmes de la fleur de leau-fatou et de la variété stable , 2004 .
[25] S. Crovisier,et al. Pseudo-rotations of the open annulus , 2005, math/0506041.
[26] P. Le Calvez. Une version feuilletée équivariante du théorème de translation de Brouwer , 2005 .
[27] Kathryn Mann,et al. Rigidity of mapping class group actions on S1 , 2018, 1808.02979.
[28] P. Calvez. Pourquoi les points périodiques des homéomorphismes du plan tournent-ils autour de certains points fixes ? , 2008 .
[29] Jean-Claude Sikorav. Points fixes d'une application symplectique homologue à l'identité , 1985 .
[30] Masaki Kashiwara,et al. Sheaves on Manifolds , 1990 .
[31] A. Fathi,et al. Structure of the group of homeomorphisms preserving a good measure on a compact manifold , 1980 .
[32] The Conley Conjecture , 2006, math/0610956.
[33] A. Hatcher,et al. The Kirby torus trick for surfaces , 2013, 1312.3518.
[34] The local rotation set is an interval , 2015, Ergodic Theory and Dynamical Systems.
[35] A. Floer. Cuplength estimates on lagrangian intersections , 1989 .
[36] Vincent Humilière,et al. The action spectrum and $$C^0$$ symplectic topology , 2018, Mathematische Annalen.
[37] H. Hofer,et al. Applications of symplectic homology I , 1994 .
[38] Basak Z. Gurel,et al. Action and index spectra and periodic orbits in Hamiltonian dynamics , 2008, 0810.5170.
[39] J. Zukas. Introduction to the Modern Theory of Dynamical Systems , 1998 .
[40] Steve Oudot,et al. The Structure and Stability of Persistence Modules , 2012, Springer Briefs in Mathematics.
[41] Dorian Le Peutrec,et al. Precise Arrhenius Law for p-forms: The Witten Laplacian and Morse–Barannikov Complex , 2011, 1105.6007.
[42] Sobhan Seyfaddini. Spectral killers and Poisson bracket invariants , 2014, 1405.3807.
[43] H. Hofer,et al. Applications of symplectic homology II: Stability of the action spectrum , 1996 .
[44] Leonidas J. Guibas,et al. Proximity of persistence modules and their diagrams , 2009, SCG '09.
[45] C^0-limits of Hamiltonian paths and the Oh-Schwarz spectral invariants , 2011, 1109.4123.
[46] F. Roux. L'ensemble de rotation autour d'un point fixe , 2013 .
[47] Gebräuchliche Fertigarzneimittel,et al. V , 1893, Therapielexikon Neurologie.
[48] L. Guillou. On the structure of homeomorphisms of the open annulus , 2009, 0906.0439.
[49] A. Floer. Symplectic fixed points and holomorphic spheres , 1989 .
[50] L. Polterovich,et al. Autonomous Hamiltonian flows, Hofer’s geometry and persistence modules , 2014, 1412.8277.
[51] Edward E. Slaminka. Removing index 0 fixed points for area preserving maps of two-manifolds , 1993 .
[52] L. Polterovich. The Geometry of the Group of Symplectic Diffeomorphism , 2001 .
[53] Claude Viterbo,et al. Symplectic topology as the geometry of generating functions , 1992 .
[54] A COMPARISON OF HOFER'S METRICS ON HAMILTONIAN DIFFEOMORPHISMS AND LAGRANGIAN SUBMANIFOLDS , 2002, math/0207070.
[55] Edward E. Slaminka,et al. A bound for the fixed point index of area-preserving homeomorphisms of two-manifolds , 1987, Ergodic Theory and Dynamical Systems.
[56] Başak Z. Gürel,et al. The Conley Conjecture and Beyond , 2014, 1411.7723.
[57] Петр Евгеньевич Пушкарь,et al. Комбинаторика фронтов лежандровых зацеплений и 4-гипотезы Арнольда@@@Combinatorics of fronts of Legendrian links and the Arnol'd 4-conjectures , 2005 .
[58] L. Polterovich,et al. Persistence modules with operators in Morse and Floer theory , 2017, 1703.01392.
[59] C. Simon. A bound for the fixed-point index of an area-preserving map with applications to mechanics , 1974 .
[60] H. Hofer. Lusternik-Schnirelman-theory for Lagrangian intersections , 1988 .
[61] P. Calvez. Dynamique des homéomorphismes du plan au voisinage d'un point fixe , 2003 .
[62] Jun Zhang,et al. Persistent homology and Floer-Novikov theory , 2015, 1502.07928.