Barcodes and area-preserving homeomorphisms

In this paper we use the theory of barcodes as a new tool for studying dynamics of area-preserving homeomorphisms. We will show that the barcode of a Hamiltonian diffeomorphism of a surface depends continuously on the diffeomorphism, and furthermore define barcodes for Hamiltonian homeomorphisms. Our main dynamical application concerns the notion of {\it weak conjugacy}, an equivalence relation which arises naturally in connection to $C^0$ continuous conjugacy invariants of Hamiltonian homeomorphisms. We show that for a large class of Hamiltonian homeomorphisms with a finite number of fixed points, the number of fixed points, counted with multiplicity, is a weak conjugacy invariant. The proof relies, in addition to the theory of barcodes, on techniques from surface dynamics such as Le Calvez's theory of transverse foliations. In our exposition of barcodes and persistence modules, we present a proof of the Isometry Theorem which incorporates Barannikov's theory of simple Morse complexes.

[1]  Benjamin Weiss,et al.  Topological groups with Rokhlin properties , 2008 .

[2]  Masaki Kashiwara,et al.  Persistent homology and microlocal sheaf theory , 2017, J. Appl. Comput. Topol..

[3]  A. Oancea A survey of Floer homology for manifolds with contact type boundary or symplectic homology , 2004, Ensaios Matemáticos.

[4]  P. Py,et al.  On Continuity of Quasimorphisms for Symplectic Maps , 2012 .

[5]  Benjamin Weiss,et al.  The topological Rohlin property and topological entropy , 2001 .

[6]  Nancy Hingston Subharmonic solutions of Hamiltonian equations on tori , 2009 .

[7]  L. Polterovich,et al.  Topological Persistence in Geometry and Analysis , 2019, University Lecture Series.

[8]  S. M. Ulam,et al.  Measure-Preserving Homeomorphisms and Metrical Transitivity , 1941 .

[9]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2007, Discret. Comput. Geom..

[10]  THE GROUP OF HAMILTONIAN HOMEOMORPHISMS AND C 0 -SYMPLECTIC TOPOLOGY , 2004, math/0402210.

[11]  Michael Usher THE SHARP ENERGY-CAPACITY INEQUALITY , 2008, 0808.1592.

[12]  C. Conley Isolated Invariant Sets and the Morse Index , 1978 .

[13]  S. A. Barannikov,et al.  The framed Morse complex and its invariants , 1994 .

[14]  SOLUTIONS OF THE COHOMOLOGICAL EQUATION FOR AREA-PRESERVING FLOWS ON COMPACT SURFACES OF HIGHER GENUS , 1997 .

[15]  A. Floer WITTEN'S COMPLEX AND INFINITE DIMENSIONAL MORSE THEORY , 1989 .

[16]  Basak Z. Gurel,et al.  Local Floer Homology and the Action Gap , 2007, 0709.4077.

[17]  J. Gambaudo,et al.  Commutators and diffeomorphisms of surfaces , 2004, Ergodic Theory and Dynamical Systems.

[18]  Dusa McDuff,et al.  The geometry of symplectic energy , 1993 .

[19]  B. Schmitt L'espace des homeomorphismes du plan qui admettent un seul point fixe d'indice donne est connexe par arcs , 1979 .

[20]  M. Bonino A dynamical property for planar homeomorphisms and an application to the problem of canonical position around an isolated fixed point , 2001 .

[21]  Afra Zomorodian,et al.  Computing Persistent Homology , 2005, Discret. Comput. Geom..

[22]  Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds , 2004, math/0405064.

[23]  R. Ho Algebraic Topology , 2022 .

[24]  F. Roux Homéomorphismes de surfaces théorèmes de la fleur de leau-fatou et de la variété stable , 2004 .

[25]  S. Crovisier,et al.  Pseudo-rotations of the open annulus , 2005, math/0506041.

[26]  P. Le Calvez Une version feuilletée équivariante du théorème de translation de Brouwer , 2005 .

[27]  Kathryn Mann,et al.  Rigidity of mapping class group actions on S1 , 2018, 1808.02979.

[28]  P. Calvez Pourquoi les points périodiques des homéomorphismes du plan tournent-ils autour de certains points fixes ? , 2008 .

[29]  Jean-Claude Sikorav Points fixes d'une application symplectique homologue à l'identité , 1985 .

[30]  Masaki Kashiwara,et al.  Sheaves on Manifolds , 1990 .

[31]  A. Fathi,et al.  Structure of the group of homeomorphisms preserving a good measure on a compact manifold , 1980 .

[32]  The Conley Conjecture , 2006, math/0610956.

[33]  A. Hatcher,et al.  The Kirby torus trick for surfaces , 2013, 1312.3518.

[34]  The local rotation set is an interval , 2015, Ergodic Theory and Dynamical Systems.

[35]  A. Floer Cuplength estimates on lagrangian intersections , 1989 .

[36]  Vincent Humilière,et al.  The action spectrum and $$C^0$$ symplectic topology , 2018, Mathematische Annalen.

[37]  H. Hofer,et al.  Applications of symplectic homology I , 1994 .

[38]  Basak Z. Gurel,et al.  Action and index spectra and periodic orbits in Hamiltonian dynamics , 2008, 0810.5170.

[39]  J. Zukas Introduction to the Modern Theory of Dynamical Systems , 1998 .

[40]  Steve Oudot,et al.  The Structure and Stability of Persistence Modules , 2012, Springer Briefs in Mathematics.

[41]  Dorian Le Peutrec,et al.  Precise Arrhenius Law for p-forms: The Witten Laplacian and Morse–Barannikov Complex , 2011, 1105.6007.

[42]  Sobhan Seyfaddini Spectral killers and Poisson bracket invariants , 2014, 1405.3807.

[43]  H. Hofer,et al.  Applications of symplectic homology II: Stability of the action spectrum , 1996 .

[44]  Leonidas J. Guibas,et al.  Proximity of persistence modules and their diagrams , 2009, SCG '09.

[45]  C^0-limits of Hamiltonian paths and the Oh-Schwarz spectral invariants , 2011, 1109.4123.

[46]  F. Roux L'ensemble de rotation autour d'un point fixe , 2013 .

[47]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[48]  L. Guillou On the structure of homeomorphisms of the open annulus , 2009, 0906.0439.

[49]  A. Floer Symplectic fixed points and holomorphic spheres , 1989 .

[50]  L. Polterovich,et al.  Autonomous Hamiltonian flows, Hofer’s geometry and persistence modules , 2014, 1412.8277.

[51]  Edward E. Slaminka Removing index 0 fixed points for area preserving maps of two-manifolds , 1993 .

[52]  L. Polterovich The Geometry of the Group of Symplectic Diffeomorphism , 2001 .

[53]  Claude Viterbo,et al.  Symplectic topology as the geometry of generating functions , 1992 .

[54]  A COMPARISON OF HOFER'S METRICS ON HAMILTONIAN DIFFEOMORPHISMS AND LAGRANGIAN SUBMANIFOLDS , 2002, math/0207070.

[55]  Edward E. Slaminka,et al.  A bound for the fixed point index of area-preserving homeomorphisms of two-manifolds , 1987, Ergodic Theory and Dynamical Systems.

[56]  Başak Z. Gürel,et al.  The Conley Conjecture and Beyond , 2014, 1411.7723.

[57]  Петр Евгеньевич Пушкарь,et al.  Комбинаторика фронтов лежандровых зацеплений и 4-гипотезы Арнольда@@@Combinatorics of fronts of Legendrian links and the Arnol'd 4-conjectures , 2005 .

[58]  L. Polterovich,et al.  Persistence modules with operators in Morse and Floer theory , 2017, 1703.01392.

[59]  C. Simon A bound for the fixed-point index of an area-preserving map with applications to mechanics , 1974 .

[60]  H. Hofer Lusternik-Schnirelman-theory for Lagrangian intersections , 1988 .

[61]  P. Calvez Dynamique des homéomorphismes du plan au voisinage d'un point fixe , 2003 .

[62]  Jun Zhang,et al.  Persistent homology and Floer-Novikov theory , 2015, 1502.07928.