On the Convergence of Finite Element Methods for Hamilton-Jacobi-Bellman Equations

We study the convergence of monotone $P1$ finite element methods on unstructured meshes for fully nonlinear Hamilton--Jacobi--Bellman equations arising from stochastic optimal control problems with possibly degenerate, isotropic diffusions. Using elliptic projection operators we treat discretizations which violate the consistency conditions of the framework by Barles and Souganidis. We obtain strong uniform convergence of the numerical solutions and, under nondegeneracy assumptions, strong $L^2$ convergence of the gradients.

[1]  Xiaobing Feng,et al.  The Vanishing Moment Method for Fully Nonlinear Second Order Partial Differential Equations: Formulation, Theory, and Numerical Analysis , 2011, 1109.1183.

[2]  W. Wasow,et al.  On the Approximation of Linear Elliptic Differential Equations by Difference Equations with Positive Coefficients , 1952 .

[3]  Alan Demlow,et al.  Local energy estimates for the finite element method on sharply varying grids , 2008, Math. Comput..

[4]  Omar Lakkis,et al.  A Finite Element Method for Nonlinear Elliptic Problems , 2011, SIAM J. Sci. Comput..

[5]  Hongjie Dong,et al.  The Rate of Convergence of Finite-Difference Approximations for Parabolic Bellman Equations with Lipschitz Coefficients in Cylindrical Domains , 2007 .

[6]  Susanne C. Brenner,et al.  C0 penalty methods for the fully nonlinear Monge-Ampère equation , 2011, Math. Comput..

[7]  Roland Glowinski,et al.  Recent Developments in Numerical Methods for Fully Nonlinear Second Order Partial Differential Equations , 2013, SIAM Rev..

[8]  Ludmil T. Zikatanov,et al.  A monotone finite element scheme for convection-diffusion equations , 1999, Math. Comput..

[9]  E. Zeidler Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .

[10]  Maurizio Falcone,et al.  An approximation scheme for the optimal control of diffusion processes , 1995 .

[11]  G. Barles,et al.  Convergence of approximation schemes for fully nonlinear second order equations , 1990, 29th IEEE Conference on Decision and Control.

[12]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[13]  Fabio Camilli,et al.  A Finite Element Like Scheme for Integro-Partial Differential Hamilton-Jacobi-Bellman Equations , 2009, SIAM J. Numer. Anal..

[14]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[15]  Guy Barles,et al.  Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations , 2007, Math. Comput..

[16]  Lars B. Wahlbin,et al.  Best approximation property in the W1∞ norm for finite element methods on graded meshes , 2011, Math. Comput..

[17]  Alexandre Ern,et al.  Nonlinear diffusion and discrete maximum principle for stabilized Galerkin approximations of the convection-diffusion-reaction equation , 2002 .

[18]  M. Kocan Approximation of viscosity solutions of elliptic partial differential equations on minimal grids , 1995 .

[19]  P. Lions,et al.  Approximation numérique des équations Hamilton-Jacobi-Bellman , 1980 .

[20]  K. Bohmer Numerical Methods for Nonlinear Elliptic Differential Equations: A Synopsis , 2010 .

[21]  Paul C. Fife,et al.  Second-Order Equations With Nonnegative Characteristic Form , 1973 .

[22]  Alexandre Ern,et al.  Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence , 2005, Math. Comput..

[23]  N. Krylov On the rate of convergence of finite-difference approximations for Bellmans equations with variable coefficients , 2000 .

[24]  G. Barles,et al.  Exit Time Problems in Optimal Control and Vanishing Viscosity Method , 1988 .

[25]  H. Kushner Numerical Methods for Stochastic Control Problems in Continuous Time , 2000 .

[26]  Ronald A. Howard,et al.  Dynamic Programming and Markov Processes , 1960 .

[27]  Iain Smears,et al.  Finite element methods with artificial diffusion for Hamilton-Jacobi-Bellman equations , 2013 .

[28]  Adam M. Oberman,et al.  Convergent Difference Schemes for Degenerate Elliptic and Parabolic Equations: Hamilton-Jacobi Equations and Free Boundary Problems , 2006, SIAM J. Numer. Anal..

[29]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[30]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[31]  Ramon Codina,et al.  A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation , 1993 .

[32]  Ran Zhang,et al.  Maximum Principles for P1-Conforming Finite Element Approximations of Quasi-linear Second Order Elliptic Equations , 2011, SIAM J. Numer. Anal..

[33]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[34]  P. Lions,et al.  Convergent difference schemes for nonlinear parabolic equations and mean curvature motion , 1996 .

[35]  Hasnaa Zidani,et al.  Some Convergence Results for Howard's Algorithm , 2009, SIAM J. Numer. Anal..