Electrical Discharge Grinding of Polycrystalline Diamond—Effect of Machining Parameters and Finishing In-Feed

Electrical discharge grinding (EDG) is becoming more prevalent in the manufacturing of polycrystalline diamond (PCD) tools. This paper concerns investigation of the effects of machining parameters, as well as finishing in-feed, to the surface quality obtained when using EDG to erode PCD. With the aid of the morphological findings, different PCD erosion mechanisms are discussed. Experimental results demonstrated that the eroded surface quality of PCD was significantly affected by the selected parameters. High temperature due to the erosion process resulted in the partial conversion of diamond to graphite phase under the surface. Higher finishing in-feed produced better surface quality and caused lower surface graphitization and lower tensile residual stress. A model for the thermal stress prediction was developed and found to have good agreement with the experimental findings.

[1]  T. Uematsu,et al.  Manufacturing of a porous PCD with skeleton structure by EDM , 2007 .

[2]  David N. Jamieson,et al.  Raman investigation of damage caused by deep ion implantation in diamond , 2000 .

[3]  K. Ehmann,et al.  Issues in polycrystalline diamond compact cutter-rock interaction from a metal machining point of view-part I: Temperature, stresses, and forces , 2012 .

[4]  Zhenkun Lei,et al.  An application of Raman spectroscopy on the measurement of residual stress in porous silicon , 2005 .

[5]  M. Herrmann,et al.  The low-pressure infiltration of diamond by silicon to form diamond–silicon carbide composites , 2008 .

[6]  D. Aspinwall,et al.  Machining of electrically conductive CVD diamond tool blanks using EDM , 2004 .

[7]  Pal Molian,et al.  Micro- and Sub-Micromachining of Type IIa Single Crystal Diamond Using a Ti:Sapphire Femtosecond Laser , 2002 .

[8]  Chun-de Ma,et al.  Thermal residual stress of polycrystalline diamond compacts , 2010 .

[9]  Vijay K. Jain,et al.  Thermal stresses due to electrical discharge machining , 2002 .

[10]  David N. Jamieson,et al.  The Raman spectrum of nanocrystalline diamond , 2000 .

[11]  Y. Vohra,et al.  Micro-raman stress investigations and X-ray diffraction analysis of polycrystalline diamond (PCD) tools , 1996 .

[12]  Hong Hocheng,et al.  Improvement of fatigue life of electrical discharge machined AISI D2 tool steel by TiN coating , 2001 .

[13]  K. Kobashi,et al.  High temperature Raman studies of diamond thin films , 1992 .

[14]  Robert A. Winholtz,et al.  Residual stress and stress gradients in polycrystalline diamond compacts , 2002 .

[15]  T. Uematsu,et al.  Manufacturing Porous Diamond with Skeleton Structure from PCD by EDM and its Application to Grinding Tools , 2007 .

[16]  S. Kidalov,et al.  Thermal Conductivity of Diamond Composites , 2009, Materials.

[17]  E. Abramof,et al.  Residual stresses and crystalline quality of heavily boron-doped diamond films analysed by micro-Raman spectroscopy and X-ray diffraction , 2003 .

[18]  A. Davey,et al.  XL. Thermal expansion of diamond , 1956 .

[19]  Tzu Yao Tai,et al.  Effect of Material Physical Properties on Residual Stress Measurement by EDM Hole-Drilling Method , 2011 .

[20]  Dingwen Yu,et al.  Influence of discharge current on machined surfaces by thermo-analysis in finish cut of WEDM , 2007 .

[21]  Liangchi Zhang,et al.  Polishing of polycrystalline diamond by the technique of dynamic friction. Part 2: Material removal mechanism , 2007 .

[22]  Mukund R. Patel,et al.  Theoretical models of the electrical discharge machining process. II. The anode erosion model , 1989 .

[23]  V. K. Jain,et al.  ANALYSIS OF SPARK PROFILES DURING EDM PROCESS , 1997 .

[24]  Kamlakar P Rajurkar,et al.  Material Removal in WEDM of PCD Blanks , 1993 .

[25]  A. Shih,et al.  Modeling of the Anode Crater Formation in Electrical Discharge Machining , 2012 .

[26]  Hong-an Ma,et al.  Effects of initial crystal size of diamond powder on surface residual stress and morphology in polycrystalline diamond (PCD) layer , 2011 .

[27]  Zhonghua Zhu,et al.  Catalytic ammonia decomposition over Ru/carbon catalysts: The importance of the structure of carbon support , 2007 .

[28]  M. B. Cai,et al.  Study of the Mechanism of Groove Wear of the Diamond Tool in Nanoscale Ductile Mode Cutting of Monocrystalline Silicon , 2007 .

[29]  M. Ürgen,et al.  Effect of surface treatment on hot-filament chemical vapour deposition grown diamond films , 2012 .

[30]  Songlin Ding,et al.  Crater size prediction in electrical discharge grinding (EDG) of polycrystalline diamond (PCD) , 2014 .

[31]  S. Robertson,et al.  Photoluminescence studies of sintered diamond compacts , 1984 .

[32]  Mukund R. Patel,et al.  Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model , 1989 .

[33]  D. Weidner,et al.  Strength of Diamond , 1994, Science.

[34]  Jamal S. Lewis,et al.  Assessment of Microbial Biofilm Growth on Nanocrystalline Diamond in a Continuous Perfusion Environment , 2010 .

[35]  Yue Shi,et al.  Properties of the πh9/2 ⊗ νi13/2 band in odd-odd 188Au , 2011 .

[36]  J. Chousal,et al.  A finite element model of EDM based on the Joule effect , 2006 .

[37]  Masayuki Hashimura,et al.  Effects of Microcracks in CVD Coating Layers on Cemented Carbide and Cermet Substrates on Residual Stress and Transverse Rupture Strength , 1997 .

[38]  Bülent Ekmekci,et al.  RESIDUAL STRESS STATE AND HARDNESS DEPTH IN ELECTRIC DISCHARGE MACHINING: DE-IONIZED WATER AS DIELECTRIC LIQUID , 2005 .

[39]  J. G. Sevillano,et al.  Electro-discharge machining (EDM) versus hard turning and grinding—Comparison of residual stresses and surface integrity generated in AISI O1 tool steel , 2008 .

[40]  R. Winholtz,et al.  Residual stresses in polycrystalline diamond compacts , 1999 .

[41]  Rui Li,et al.  FEM analysis on the effect of cobalt content on thermal residual stress in polycrystalline diamond compact (PDC) , 2012 .

[42]  Jiwang Yan,et al.  Micro-cutting characteristics of EDM fabricated high-precision polycrystalline diamond tools , 2013 .

[43]  Ahmet T. Alpas,et al.  The Performance of Diamond-Like Carbon Coated Drills in Thermally Assisted Drilling of Ti-6Al-4V , 2013 .

[44]  A. Schmidt,et al.  Hybrid CO2 Laser/Waterjet Machining of Polycrystalline Diamond Substrate: Material Separation Through Transformation Induced Controlled Fracture , 2014 .

[45]  Demeng Che,et al.  Issues in Polycrystalline Diamond Compact Cutter–Rock Interaction From a Metal Machining Point of View—Part II: Bit Performance and Rock Cutting Mechanics , 2012 .

[46]  Malik Yahiaoui,et al.  A study on PDC drill bits quality , 2013 .

[47]  H. Hocheng,et al.  Effect of electrical discharge machining on surface characteristics and machining damage of AISI D2 tool steel , 2003 .

[48]  V. D. Andreev,et al.  Spontaneous graphitization and thermal disintegration of diamond at T>2000 K , 1999 .

[49]  Dong Nyung Lee,et al.  The mechanism of abnormal grain growth in polycrystalline diamond during high pressure-high temperature sintering , 2004 .