Nonparametric test for checking lack of fit of the quantité regression model under random censoring

The author proposes a nonparametric test for checking the lack of fit of the quantile function of survival time given the covariates; she assumes that survival time is subjected to random right censoring. Her test statistic is a kemel-based smoothing estimator of a moment condition. The test statistic is asymptotically Gaussian under the null hypothesis. The author investigates its behavior under local alternative sequences. She assesses its finite-sample power through simulations and illustrates its use with the Stanford heart transplant data. Un test non parametrique d'ajustement pour le modele de regression quantile en presence de censure aleatoire Resume: L'au teure propose un test non parametrique d'ajustement de la fonction quantile d'un temps de survie etant donne certaines covariables; elle suppose que l'observation de la survie est sujette a une censure a droite aleatoire. Sa statistique de test est un estimateur a noyau lisse d'une condition de moments. La loi asymptotique de cette statistique est gaussienne sous l'hypothese nulle. L'auteure en etudie le comportement sous des suites de contre-hypotheses locales. Elle en evalue la puissance a taille finie par voie de simulation et en illustre l'emploi au moyen des donnees de l'etude de transplantation cardiaque de Stanford.

[1]  Shakeeb Khan,et al.  SEMIPARAMETRIC ESTIMATION OF A PARTIALLY LINEAR CENSORED REGRESSION MODEL , 2001, Econometric Theory.

[2]  Lan Wang A simple nonparametric test for diagnosing nonlinearity in Tobit median regression model , 2007 .

[3]  J. Zheng,et al.  A CONSISTENT NONPARAMETRIC TEST OF PARAMETRIC REGRESSION MODELS UNDER CONDITIONAL QUANTILE RESTRICTIONS , 1998, Econometric Theory.

[4]  Joel L Horowitz,et al.  An Adaptive, Rate-Optimal Test of Linearity for Median Regression Models , 2002 .

[5]  J. Powell,et al.  Least absolute deviations estimation for the censored regression model , 1984 .

[6]  Jian Huang,et al.  Least absolute deviations estimation for the accelerated failure time model , 2007 .

[7]  Rupert G. Miller,et al.  Regression with censored data , 1982 .

[8]  Song Yang,et al.  Censored Median Regression Using Weighted Empirical Survival and Hazard Functions , 1999 .

[9]  Jeffrey D. Hart,et al.  Testing the equality of two regression curves using linear smoothers , 1991 .

[10]  Stephen Portnoy,et al.  Censored Regression Quantiles , 2003 .

[11]  Sundarraman Subramanian,et al.  Median regression using nonparametric kernel estimation , 2002 .

[12]  M. Tableman,et al.  Survival Analysis Using S : Analysis of Time-to-Event Data , 2003 .

[13]  Xuming He,et al.  A Lack-of-Fit Test for Quantile Regression , 2003 .

[14]  Bo E. Honoré,et al.  Quantile regression under random censoring , 2002 .

[15]  A. V. D. Vaart,et al.  Asymptotic Statistics: Frontmatter , 1998 .

[16]  Robert P. Sherman,et al.  Maximal Inequalities for Degenerate $U$-Processes with Applications to Optimization Estimators , 1994 .

[17]  Ali Gannoun,et al.  Non‐parametric Quantile Regression with Censored Data , 2005 .

[18]  P. Hall Central limit theorem for integrated square error of multivariate nonparametric density estimators , 1984 .

[19]  K. Singh,et al.  The product-limit estimator and the bootstrap: Some asymptotic representations , 1986 .

[20]  Zhiliang Ying,et al.  Survival analysis with median regression models , 1995 .

[21]  Min Tsao,et al.  Empirical likelihood inference for median regression models for censored survival data , 2003 .

[22]  Adrian Bowman,et al.  NON-PARAMETRIC ANALYSIS OF COVARIANCE , 1995 .