Local cohomology of modular invariant rings

For $K$ a field, consider a finite subgroup $G$ of $\operatorname{GL}_n(K)$ with its natural action on the polynomial ring $R:=K[x_1,\dots,x_n]$. Let $\mathfrak{n}$ denote the homogeneous maximal ideal of the ring of invariants $R^G$. We study how the local cohomology module $H^n_{\mathfrak{n}}(R^G)$ compares with $H^n_{\mathfrak{n}}(R)^G$. Various results on the $a$-invariant and on the Hilbert series of $H^n_\mathfrak{n}(R^G)$ are obtained as a consequence.

[1]  A. Braun The Gorenstein property for modular binary forms invariants , 2016 .

[2]  A. Braun On the Gorenstein property for modular invariants , 2011 .

[3]  B. Ulrich,et al.  Integral extensions and the a-invariant , 2011, 1105.5722.

[4]  P. Fleischmann,et al.  Relative invariants, ideal classes and quasi-canonical modules of modular rings of invariants , 2010, 1011.5153.

[5]  Ernst Kunz,et al.  Residues and Duality for Projective Algebraic Varieties , 2008 .

[6]  A. Broer The Direct Summand Property in Modular Invariant Theory , 2005 .

[7]  Gregor Kemper,et al.  A Database of Invariant Rings , 2001, Exp. Math..

[8]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[9]  Larry Smith,et al.  Polynomial Invariants of Finite Groups , 1995 .

[10]  Richard P. Stanley,et al.  Invariants of finite groups and their applications to combinatorics , 1979 .

[11]  Kei-ichi Watanabe,et al.  On graded rings, I , 1978 .

[12]  Melvin Hochster,et al.  Invariant theory and the generic perfection of determinantal loci , 1971 .

[13]  Kenneth Carl Jeffries Rings of invariants, F-regularity, and local cohomology , 2015 .

[14]  J. Müller Invariant Theory of Finite Groups , 2005 .

[15]  R. Milgram,et al.  Modular Invariant Theory , 1994 .

[16]  Barbara R. Peskin On the dualizing sheaf of a quotient scheme , 1984 .

[17]  Geir Ellingstad,et al.  PROFONDEUR D'ANNEAUX D'INVARIANTS EN CARACTÉRISTIQUE p , 1978 .

[18]  渡辺 敬一 Certain invariant subrings are Gorenstein , 1976 .