Beyond the microscope: embedded detectors for cell biology applications

Embedding active sensing microelectronic substrates in microfluidic devices is a challenging feature in functional integration of complex bioanalytical protocols in lab-on-a-chip platforms. This paper reviews the design trade-offs of optical and impedance sensing techniques for cell biology imaging in view of their SNR limits. Results are discussed on the basis of experimental data of two prototypes.

[1]  A.S. Sedra,et al.  Analog MOS integrated circuits for signal processing , 1987, Proceedings of the IEEE.

[2]  Marc Madou,et al.  Scaling issues in chemical and biological sensors , 2003, Proc. IEEE.

[3]  Gabor C. Temes,et al.  Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization , 1996, Proc. IEEE.

[4]  D. Schmitt-Landsiedel,et al.  A 128 /spl times/ 128 CMOS bio-sensor array for extracellular recording of neural activity , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[5]  Hon-Sum Philip Wong,et al.  Technology and device scaling considerations for CMOS imagers , 1996 .

[6]  A. Hierlemann,et al.  CMOS microelectrode array for the monitoring of electrogenic cells. , 2004, Biosensors & bioelectronics.

[7]  A. Hierlemann,et al.  Microfabrication techniques for chemical/biosensors , 2003, Proc. IEEE.

[8]  B. Eversmann,et al.  A 128 × 128 CMOS bio-sensor array for extracellular recording of neural activity , 2003 .

[9]  R. Guerrieri,et al.  Capacitive sensor array for localization of bioparticles in CMOS lab-on-a-chip , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[10]  John G. Proakis,et al.  Digital Communications , 1983 .

[11]  N. Manaresi,et al.  A CMOS chip for individual cell manipulation and detection , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..